Sharp weighted inequalities for the vector-valued maximal function

被引:14
作者
Pérez, C [1 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
关键词
D O I
10.1090/S0002-9947-99-02573-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove in this paper some sharp weighted inequalities for the vector-valued maximal function (M) over bar(q) of Fefferman and Stein defined by [GRAPHICS] where M is the Hardy-Littlewood maximal function. As a consequence we derive the main result establishing that in the range 1 < q < p < infinity there exists a constant C such that integral(Rn) (M) over bar(q)f(x)(p) w(x)dx less than or equal to C integral(Rn) \f(x)\(p)(q) M[p/q]+1 w(x)dx. Furthermore the result is sharp since M[p/q]+1 cannot be replaced by M-[p/q]. We also show the following endpoint estimate w({x is an element of R-n : (M) over bar(q)f(x) > lambda}) less than or equal to C/lambda integral(Rn) \f(x)\(q) Mw(x)dx, where C is a constant independent of lambda.
引用
收藏
页码:3265 / 3288
页数:24
相关论文
共 20 条
[1]  
ANDERSEN KF, 1980, STUD MATH, V69, P19
[2]   CONVOLUTION OPERATORS ON BANACH SPACE VALUED FUNCTIONS [J].
BENEDEK, A ;
PANZONE, R ;
CALDERON, AP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1962, 48 (03) :356-&
[3]   SOME WEIGHTED NORM INEQUALITIES CONCERNING THE SCHRODINGER-OPERATORS [J].
CHANG, SYA ;
WILSON, JM ;
WOLFF, TH .
COMMENTARII MATHEMATICI HELVETICI, 1985, 60 (02) :217-246
[4]  
CHANILLO S, 1987, INDIANA U MATH J, V36
[5]  
CRUZURIBE D, 2 WEIGHT EXTRAPOLATI
[6]  
de Guzman M., 1975, LECT NOTES MATH, V481
[7]   CALDERON-ZYGMUND THEORY FOR OPERATOR-VALUED KERNELS [J].
DEFRANCIA, JLR ;
RUIZ, FJ ;
TORREA, JL .
ADVANCES IN MATHEMATICS, 1986, 62 (01) :7-48
[8]   SOME MAXIMAL INEQUALITIES [J].
FEFFERMAN, C ;
STEIN, EM .
AMERICAN JOURNAL OF MATHEMATICS, 1971, 93 (01) :107-+
[9]  
GARCIACUERVA J, 1985, N HOLLAND MATH STUDI, V16
[10]  
KOKILASHVILI V, SOVIET MATH DOKL, V19, P272