Thermodynamic evaluation of methanol steam reforming for hydrogen production

被引:147
|
作者
Faungnawakij, Kajornsak
Kikuchi, Ryuji [1 ]
Eguchi, Koichi
机构
[1] Kyoto Univ, Grad Sch Engn, Dept Energy & Hydrocarbon Chem, Nishikyo Ku, Kyoto 6158510, Japan
[2] JST, Nishikyo Ku, Kyoto 6158245, Japan
关键词
methanol; hydrogen; steam reforming; thermodynamic equilibrium; fuel cell;
D O I
10.1016/j.jpowsour.2006.04.091
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermodynamic equilibrium of methanol steam reforming (MeOH SR) was studied by Gibbs free minimization for hydrogen production as a function of steam-to-carbon ratio (S/C = 0-10), reforming temperature (25-1000 degrees C), pressure (0.5-3 atm), and product species. The chemical species considered were methanol, water, hydrogen, carbon dioxide, carbon monoxide, carbon (graphite), methane, ethane, propane, i-butane, n-butane, ethanol. propanol, i-butanol, n-butanol, and dimethyl ether (DME). Coke-formed and coke-free regions were also determined as a function of S/C ratio. Based upon a compound basis set MeOH, CO2, CO, H-2 and H2O, complete conversion of MeOH was attained at S/C = 1 when the temperature was higher than 200 degrees C at atmospheric pressure. The concentration and yield of hydrogen could be achieved at almost 75% on a dry basis and 100%, respectively. From the reforming efficiency, the operating condition was optimized for the temperature range of 100-225 degrees C, S/C range of 1.5-3, and pressure at 1 atm. The calculation indicated that the reforming condition required from sufficient CO concentration (< 10ppm) for polymer electrolyte fuel cell application is too severe for the existing catalysts (T-r=50 degrees C and S/C=4-5). Only methane and coke thermodynamically coexist with H2O, H-2, CO, and CO2, while C2H6, C3H8, i-C4H10, n-C4H10, CH3OH, C2H5OH, C3H7OH, i-C4H9OH, n-C4H9OH, and C2H6O were suppressed at essentially zero. The temperatures for coke-free region decreased with increase in S/C ratios. The impact of pressure was negligible upon the complete conversion of MeOH. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:87 / 94
页数:8
相关论文
共 50 条
  • [1] Hydrogen production from steam-methanol reforming: thermodynamic analysis
    Lwin, Y
    Daud, WRW
    Mohamad, AB
    Yaakob, Z
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2000, 25 (01) : 47 - 53
  • [2] Hydrogen production by steam reforming of methanol
    Iwasa, N
    Nomura, W
    Mayanagi, T
    Fujita, S
    Arai, M
    Takezawa, N
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2004, 37 (02) : 286 - 293
  • [3] Methanol steam reforming for hydrogen production
    Palo, Daniel R.
    Dagle, Robert A.
    Holladay, Jamie D.
    CHEMICAL REVIEWS, 2007, 107 (10) : 3992 - 4021
  • [4] Thermodynamic Evaluation of Hydrogen Production Via Bioethanol Steam Reforming
    Tasnadi-Asztalos, Zsolt
    Cormos, Ana-Maria
    Imre-Lucaci, Arpad
    Cormos, Calin C.
    PROCESSES IN ISOTOPES AND MOLECULES (PIM 2013), 2013, 1565 : 175 - 178
  • [5] Simulations of Hydrogen Production by Methanol Steam Reforming
    Chiu, Yu-Jen
    Chiu, Han-Chieh
    Hsieh, Ren-Horn
    Jang, Jer-Huan
    Jiang, Bo-Yi
    5TH INTERNATIONAL CONFERENCE ON POWER AND ENERGY SYSTEMS ENGINEERING (CPESE 2018), 2019, 156 : 38 - 42
  • [6] Optimization of methanol steam reforming for hydrogen production
    Pan, L.-W. (panlw@dicp.ac.cn), 2013, Science Press (41):
  • [7] Methanol steam reforming for hydrogen production in a minireactor
    Wang, Feng
    Li, Longjian
    Qi, Bo
    Cui, Wenzhi
    Xin, Mingdao
    Chen, Qinghua
    Deng, Lianfeng
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2008, 42 (04): : 509 - 514
  • [8] Intensification of hydrogen production by methanol steam reforming
    Sanz, Oihane
    Velasco, Ion
    Perez-Miqueo, Inigo
    Poyato, Rosalia
    Antonio Odriozola, Jose
    Montes, Mario
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (10) : 5250 - 5259
  • [9] Thermodynamic analysis of hydrogen production by steam reforming
    Lutz, AE
    Bradshaw, RW
    Keller, JO
    Witmer, DE
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2003, 28 (02) : 159 - 167
  • [10] Thermodynamic analysis of hydrogen production for fuel cells from oxidative steam reforming of methanol
    Wang, Jihui
    Chen, Hong
    Tian, Ye
    Yao, Mingfa
    Li, Yongdan
    FUEL, 2012, 97 : 805 - 811