共 11 条
Power-central polynomials on matrices
被引:17
作者:
Kanel-Belov, Alexey
[1
]
Malev, Sergey
[1
,2
]
Rowen, Louis
[1
]
机构:
[1] Bar Ilan Univ, Dept Math, Ramat Gan, Israel
[2] Univ Edinburgh, Edinburgh, Midlothian, Scotland
基金:
以色列科学基金会;
关键词:
D O I:
10.1016/j.jpaa.2015.11.001
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Any multilinear non-central polynomial p (in several noncommuting variables) takes on values of degree n in the matrix algebra M-n(F) over an infinite field F. The polynomial p is called v-central for M-n(F) if p(v) takes on only scalar values, with v minimal such. Multilinear v-central polynomials do not exist for any v, with n > 3, answering a question of Drensky and Spenko. Saltman proved a result implying that a non-central polynomial p cannot be v-central for M-n(F), for n odd, unless v is a product of distinct odd primes and n = mv with m prime to v; we extend this by showing for n even, that v cannot be divisible by 4. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:2164 / 2176
页数:13
相关论文