Power-central polynomials on matrices

被引:17
作者
Kanel-Belov, Alexey [1 ]
Malev, Sergey [1 ,2 ]
Rowen, Louis [1 ]
机构
[1] Bar Ilan Univ, Dept Math, Ramat Gan, Israel
[2] Univ Edinburgh, Edinburgh, Midlothian, Scotland
基金
以色列科学基金会;
关键词
D O I
10.1016/j.jpaa.2015.11.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Any multilinear non-central polynomial p (in several noncommuting variables) takes on values of degree n in the matrix algebra M-n(F) over an infinite field F. The polynomial p is called v-central for M-n(F) if p(v) takes on only scalar values, with v minimal such. Multilinear v-central polynomials do not exist for any v, with n > 3, answering a question of Drensky and Spenko. Saltman proved a result implying that a non-central polynomial p cannot be v-central for M-n(F), for n odd, unless v is a product of distinct odd primes and n = mv with m prime to v; we extend this by showing for n even, that v cannot be divisible by 4. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:2164 / 2176
页数:13
相关论文
共 11 条
[1]  
Belov A., 2013, P AM MATH SOC UNPUB
[2]   CENTRAL POLYNOMIALS FOR MATRIX RINGS [J].
FORMANEK, E .
JOURNAL OF ALGEBRA, 1972, 23 (01) :129-&
[3]   THE IMAGES OF NON-COMMUTATIVE POLYNOMIALS EVALUATED ON 2 x 2 MATRICES [J].
Kanel-Belov, Alexey ;
Malev, Sergey ;
Rowen, Louis .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (02) :465-478
[4]   NIL AND POWER-CENTRAL POLYNOMIALS IN RINGS [J].
LERON, U .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 202 (FEB) :97-103
[5]   The images of non-commutative polynomials evaluated on 2 x 2 matrices over an arbitrary field [J].
Malev, Sergey .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (06)
[6]  
Razmyslov Yu. P., 1973, MATH USSR IZV, V37, p[483, 479]
[7]  
Rowen L.H, 1980, PURE APPL MATH
[8]   CORRECTION [J].
ROWEN, LH .
ISRAEL JOURNAL OF MATHEMATICS, 1982, 43 (03) :277-280
[9]   CYCLIC DIVISION-ALGEBRAS [J].
ROWEN, LH .
ISRAEL JOURNAL OF MATHEMATICS, 1982, 41 (03) :213-234
[10]  
Saltman D., 1980, P AM MATH SOC, V78