INTRINSICALLY LIPSCHITZ FUNCTIONS WITH NORMAL TARGET IN CARNOT GROUPS

被引:11
作者
Antonelli, Gioacchino [1 ]
Merlo, Andrea [2 ]
机构
[1] Scuola Normale Super Pisa, Piazza Cavalieri 7, I-56126 Pisa, Italy
[2] Univ Pisa, Largo Bruno Pontecorvo 5, I-56126 Pisa, Italy
来源
ANNALES FENNICI MATHEMATICI | 2021年 / 46卷 / 01期
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
Carnot groups; intrinsically Lipschitz functions; Rademacher theorem; area formula;
D O I
10.5186/aasfm.2021.4638
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a Rademacher theorem for intrinsically Lipschitz functions phi: U C W-+ L, where U is a Borel set, W and L are complementary subgroups of a Carnot group, where we require that L is a normal subgroup. Our hypotheses are satisfied for example when W is a horizontal subgroup. Moreover, we provide an area formula for this class of intrinsically Lipschitz functions.
引用
收藏
页码:571 / 579
页数:9
相关论文
共 11 条
[1]  
AHLFORS L. V., 1989, Complex Analysis: Articles dedicated to Albert Pfluger on the occasion of his 80th birthday, P1
[2]  
[Anonymous], 1950, Lectures on Classical Differential Geometry
[3]   Univalence criteria for lifts of harmonic mappings to minimal surfaces [J].
Chuaqui, M. ;
Duren, R. ;
Osgood, B. .
JOURNAL OF GEOMETRIC ANALYSIS, 2007, 17 (01) :49-74
[4]   Quasiconformal extensions to space of Weierstrass-Enneper lifts [J].
Chuaqui, M. ;
Duren, P. ;
Osgood, B. .
JOURNAL D ANALYSE MATHEMATIQUE, 2018, 135 (02) :487-526
[5]   Simple curves in Rn and Ahlfors' Schwarzian derivative [J].
Chuaqui, M ;
Gevirtz, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (01) :223-230
[6]  
Chuaqui M, 2011, PURE APPL MATH Q, V7, P223
[7]  
CHUAQUI M., 2008, Rn.-Arch. Math., V92, P626
[8]   On Ahlfors' Schwarzian derivative and knots [J].
Chuaqui, Martin .
PACIFIC JOURNAL OF MATHEMATICS, 2007, 231 (01) :51-61
[9]  
do Carmo M. P., 1976, Differential geometry of curves and surfaces
[10]   THE SCHWARZIAN DERIVATIVE AND CONFORMAL MAPPING OF RIEMANNIAN-MANIFOLDS [J].
OSGOOD, B ;
STOWE, D .
DUKE MATHEMATICAL JOURNAL, 1992, 67 (01) :57-99