Unveiled correlations between electron affinity and solvation in redox potential of quinone-based sodium-ion batteries

被引:43
作者
Kim, Ki Chul [1 ,2 ]
Liu, Tianyuan [3 ]
Jung, Ku Hyun [2 ]
Lee, Seung Woo [3 ,4 ]
Jang, Seung Soon [1 ,4 ,5 ,6 ]
机构
[1] Georgia Inst Technol, Sch Mat Sci & Engn, Computat NanoBio Technol Lab, Atlanta, GA 30332 USA
[2] Konkuk Univ, Dept Chem Engn, Seoul 05029, South Korea
[3] Georgia Inst Technol, GW Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
[4] Georgia Inst Technol, Inst Elect & Nanotechnol, Atlanta, GA 30332 USA
[5] Georgia Inst Technol, Parker H Petit Inst Bioengn & Biosci, Atlanta, GA 30332 USA
[6] Georgia Inst Technol, Strateg Energy Inst, Atlanta, GA 30332 USA
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
CATHODE MATERIALS; LITHIUM; LI; DERIVATIVES; CHALLENGES; DESIGN; ANTHRAQUINONE; POLYPYRROLE; MOLECULES; DIFFUSION;
D O I
10.1016/j.ensm.2019.01.017
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
First-principles density functional theory method is employed with experimental techniques to investigate the redox properties and charge storage performance of seven quinone derivatives and to assess their potential as cathodes in sodium-ion batteries. The computed redox properties are comprehensively correlated with other properties, namely, electron affinity (EA), solvation energy, charge storage capacity, and energy density. The correlations are further verified to be applied not only to quinones but also to other organic molecules. The established universal correlations highlight three main conclusions. First, EA and solvation energy need to be cooperatively tuned to achieve a specific redox potential. Second, the exceptionally high performance of anthraquinone-2,6-dicarboxylic acid can be explained by the correlation of the redox potential with EA and solvation energy. Third, the differences in the performance between the calculated and experimental values for the other six quinone derivatives mainly result from the Na binding configurations, highlighting the experimental charge capacity is extraordinarily enhanced by metastable Na binding scenarios.
引用
收藏
页码:242 / 250
页数:9
相关论文
共 43 条
  • [1] [Anonymous], JAG VERS 7 6
  • [2] Investigation of the Redox Chemistry of Anthraquinone Derivatives Using Density Functional Theory
    Bachman, Jonathan E.
    Curtiss, Larry A.
    Assary, Rajeev S.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2014, 118 (38) : 8852 - 8860
  • [3] Over 99.6 wt%-pure, sub-millimeter-long carbon nanotubes realized by fluidized-bed with careful control of the catalyst and carbon feeds
    Chen, Zhongming
    Kim, Dong Young
    Hasegawa, Kei
    Osawa, Toshio
    Noda, Suguru
    [J]. CARBON, 2014, 80 : 339 - 350
  • [4] Hybrid density functional calculations of redox potentials and formation energies of transition metal compounds
    Chevrier, V. L.
    Ong, S. P.
    Armiento, R.
    Chan, M. K. Y.
    Ceder, G.
    [J]. PHYSICAL REVIEW B, 2010, 82 (07)
  • [5] MoS2/Graphene Composite Paper for Sodium-Ion Battery Electrodes
    David, Lamuel
    Bhandavat, Romil
    Singh, Gurpreet
    [J]. ACS NANO, 2014, 8 (02) : 1759 - 1770
  • [6] Computational design of molecules for an all-quinone redox flow battery
    Er, Suleyman
    Suh, Changwon
    Marshak, Michael P.
    Aspuru-Guzik, Alan
    [J]. CHEMICAL SCIENCE, 2015, 6 (02) : 885 - 893
  • [7] Challenges in the development of advanced Li-ion batteries: a review
    Etacheri, Vinodkumar
    Marom, Rotem
    Elazari, Ran
    Salitra, Gregory
    Aurbach, Doron
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) : 3243 - 3262
  • [8] The Li-Ion Rechargeable Battery: A Perspective
    Goodenough, John B.
    Park, Kyu-Sung
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) : 1167 - 1176
  • [9] Challenges for Rechargeable Li Batteries
    Goodenough, John B.
    Kim, Youngsik
    [J]. CHEMISTRY OF MATERIALS, 2010, 22 (03) : 587 - 603
  • [10] Carbonyls: Powerful Organic Materials for Secondary Batteries
    Haeupler, Bernhard
    Wild, Andreas
    Schubert, Ulrich S.
    [J]. ADVANCED ENERGY MATERIALS, 2015, 5 (11)