Quantitative local and global a priori estimates for fractional nonlinear diffusion equations

被引:86
作者
Bonforte, Matteo [1 ]
Luis Vazquez, Juan [1 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
关键词
Nonlinear diffusion equation; Fractional Laplacian; Weighted global estimates; Existence for large data; Positivity estimates; Initial trace; LIMIT;
D O I
10.1016/j.aim.2013.09.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish quantitative estimates for solutions u(t, x) to the fractional nonlinear diffusion equation, partial derivative tu + (-Delta)(s) (u(m)) = 0 in the whole range of exponents m > 0, 0 <s < 1. The equation is posed in the whole space x ERd. We first obtain weighted global integral estimates that allow to establish existence of solutions for classes of large data. In the core of the paper we obtain quantitative pointwise lower estimates of the positivity of the solutions, " depending only on the norm of the initial data in a certain ball. The estimates take a different form in three exponent ranges: slow diffusion, good range of fast diffusion, and very fast diffusion. Finally, we show existence and uniqueness of initial traces. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:242 / 284
页数:43
相关论文
共 42 条
[1]  
[Anonymous], 2009, CAMBRIDGE STUD ADV M
[2]  
[Anonymous], 2006, OXFORD LECT SERIES M
[3]  
[Anonymous], 1992, Measure theory and fine properties of functions
[4]  
[Anonymous], 1988, REV MAT IBEROAMER
[5]  
[Anonymous], 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
[6]  
ARONSON DG, 1983, T AM MATH SOC, V280, P351, DOI 10.2307/1999618
[7]   Continuity of the temperature in boundary heat control problems [J].
Athanasopoulos, I. ;
Caffarelli, L. A. .
ADVANCES IN MATHEMATICS, 2010, 224 (01) :293-315
[8]  
Barrios B., 2013, PREPRINT
[9]   THE CONTINUOUS DEPENDENCE ON PHI OF SOLUTIONS OF UT-DELTA-PHI(U)=0 [J].
BENILAN, P ;
CRANDALL, MG .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (02) :161-177
[10]  
Benilan P., 1981, CONTRIBUTIONS ANAL G, P23