Automatic morphology-based cubic p-spline fitting methodology for smoothing and baseline-removal of Raman spectra

被引:38
作者
Jose Gonzalez-Vidal, Juan [1 ,2 ]
Perez-Pueyo, Rosanna [1 ]
Jose Soneira, Maria [1 ]
机构
[1] Univ Politecn Cataluna, ETSETB, Signal Theory & Commun Dept, C Sor Eulalia Anzizu S-N,D5,Campus Nord, ES-08034 Barcelona, Spain
[2] European Space Agcy, Business Incubat Ctr Barcelona, DAPCOM Data Serv, Parc UPC RDIT,C Esteve Terrades 1, Castelldefels 08860, Spain
关键词
Raman spectroscopy; noise filtering; shot noise; fluorescence's baseline; pigment analysis; CONTINUOUS WAVELET TRANSFORM; PENALIZED LEAST-SQUARES; DIFFERENCE SPECTROSCOPY; MATHEMATICAL MORPHOLOGY; FLUORESCENCE REJECTION; BACKGROUND SUBTRACTION; JOIN POINTS; ALGORITHM; REGRESSION; PIGMENTS;
D O I
10.1002/jrs.5130
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
Noise filtering is considered a crucial step for the proper interpretation of Raman spectra. In this work, we present a new denoising procedure which enhances the Raman information whilst reducing unwanted contributions from the most frequent noise sources, i.e. the shot noise and the fluorescence's baseline. The procedure increases the signal-to-noise ratio whilst preserving simultaneously the shapes, positions and intensity ratios of the Raman bands. The method relies on cubic penalized spline fitting and mathematical morphology and requires no user input. We describe the details of this method and include a benchmark to study the performance of the presented approach compared with the most commonly used denoising techniques. The method has been successfully applied to improve the signal quality of Raman spectra from artistic pigments. The reliable results that were obtained make the methodology a useful tool to help the analyst in the interpretation of Raman spectra from pigments in artworks. Copyright (c) 2017 John Wiley & Sons, Ltd.
引用
收藏
页码:878 / 883
页数:6
相关论文
共 56 条
[1]  
[Anonymous], 2001, A practical guide to splines
[2]  
[Anonymous], 1988, Image analysis and mathematical morphology
[3]   Automatic Baseline Recognition for the Correction of Large Sets of Spectra Using Continuous Wavelet Transform and Iterative Fitting [J].
Bertinetto, Carlo G. ;
Vuorinen, Tapani .
APPLIED SPECTROSCOPY, 2014, 68 (02) :155-164
[4]   A robust method for automated background subtraction of tissue fluorescence [J].
Cao, Alex ;
Pandya, Abhilash K. ;
Serhatkulu, Gulay K. ;
Weber, Rachel E. ;
Dai, Houbei ;
Thakur, Jagdish S. ;
Naik, Vaman M. ;
Naik, Ratna ;
Auner, Gregory W. ;
Rabah, Raja ;
Freeman, D. Carl .
JOURNAL OF RAMAN SPECTROSCOPY, 2007, 38 (09) :1199-1205
[5]   Comparative Analysis of a Principal Component Analysis-Based and an Artificial Neural Network-Based Method for Baseline Removal [J].
Carvajal, Roberto C. ;
Arias, Luis E. ;
Garces, Hugo O. ;
Sbarbaro, Daniel G. .
APPLIED SPECTROSCOPY, 2016, 70 (04) :604-617
[6]   Pablo Picasso to Jasper Johns: a Raman study of cobalt-based synthetic inorganic pigments [J].
Casadio, F. ;
Bezur, A. ;
Fiedler, I. ;
Muir, K. ;
Trad, T. ;
Maccagnola, S. .
JOURNAL OF RAMAN SPECTROSCOPY, 2012, 43 (11) :1761-1771
[7]   Identification of artistic materials in paintings and drawings by Raman spectroscopy: some challenges and future outlook [J].
Centeno, Silvia A. .
JOURNAL OF RAMAN SPECTROSCOPY, 2016, 47 (01) :9-15
[8]  
desRooi J. J., 2012, CHEMOM INTEL LAB SYS, V117, P56
[9]   Decorated plasterwork in the Alhambra investigated by Raman spectroscopy: comparative field and laboratory study [J].
Dominguez-Vidal, A. ;
de la Torre-Lopez, M. J. ;
Campos-Sunol, M. J. ;
Rubio-Domene, R. ;
Ayora-Canada, M. J. .
JOURNAL OF RAMAN SPECTROSCOPY, 2014, 45 (11-12) :1006-1012
[10]  
Edwards H.G.M., 2015, ENCY ANAL CHEM