Sufficient conditions for pseudo-Lipschitz property in convex semi-infinite vector optimization problems

被引:26
作者
Chuong, Thai Doan [2 ]
Yao, Jen-Chih [1 ]
机构
[1] Natl Sun Yat Sen Univ, Dept Appl Math, Kaohsiung 804, Taiwan
[2] Dong Thap Univ, Dept Math, Cao Lanh City, Dong Thap Prov, Vietnam
关键词
Convex semi-infinite vector optimization; Efficient solution map; Pseudo-Lipschitz; Functional perturbations; Slater condition; METRIC REGULARITY; CONTINUITY; POSEDNESS; STABILITY;
D O I
10.1016/j.na.2009.06.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is devoted to the study of the pseudo-Lipschitz property of the efficient (Pareto) solution map for the perturbed convex semi-infinite vector optimization problem (CSVO). We establish sufficient conditions for the pseudo-Lipschitz property of the efficient solution map of (CSVO) under continuous perturbations of the right-hand side of the constraints and functional perturbations of the objective function. Examples are given to illustrate the obtained results. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:6312 / 6322
页数:11
相关论文
共 25 条
  • [1] Aliprantis C.D., 2006, Infinite Dimensional Analysis
  • [2] BROSOWSKI B, 1984, SENSITIVITY STABILIT, P18
  • [3] Metric regularity in convex semi-infinite optimization under canonical perturbations
    Canovas, M. J.
    Klatte, D.
    Lopez, M. A.
    Parra, J.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (03) : 717 - 732
  • [4] Sufficient conditions for total ill-posedness in linear semi-infinite optimization
    Canovas, M. J.
    Lopez, M. A.
    Parra, J.
    Toledo, F. J.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2007, 181 (03) : 1126 - 1136
  • [5] On the Lipschitz Modulus of the Argmin Mapping in Linear Semi-Infinite Optimization
    Canovas, M. J.
    Gomez-Senent, F. J.
    Parra, J.
    [J]. SET-VALUED ANALYSIS, 2008, 16 (5-6): : 511 - 538
  • [6] Lipschitz continuity of the optimal value via bounds on the optimal set in linear semi-infinite optimization
    Canovas, Maria J.
    Lopez, Marco A.
    Parra, Juan
    Toledo, F. Javier
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2006, 31 (03) : 478 - 489
  • [7] Metric regularity of semi-infinite constraint systems
    Cánovas, MJ
    Dontchev, L
    López, MA
    Parra, J
    [J]. MATHEMATICAL PROGRAMMING, 2005, 104 (2-3) : 329 - 346
  • [8] Stability and well-posedness in linear semi-infinite programming
    Cánovas, MJ
    López, MA
    Parra, J
    Todorov, MI
    [J]. SIAM JOURNAL ON OPTIMIZATION, 1999, 10 (01) : 82 - 98
  • [9] Stability of semi-infinite vector optimization problems under functional perturbations
    Chuong, T. D.
    Huy, N. Q.
    Yao, J. C.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2009, 45 (04) : 583 - 595
  • [10] Pseudo-Lipschitz property of linear semi-infinite vector optimization problems
    Chuong, T. D.
    Huy, N. Q.
    Yao, J. C.
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 200 (03) : 639 - 644