A numerical algorithm for the solution of a phase-field model of polycrystalline materials

被引:42
作者
Dorr, M. R. [1 ]
Fattebert, J. -L. [1 ]
Wickett, M. E. [1 ]
Belak, J. F. [1 ]
Turchi, P. E. A. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
Phase-field model; Polycrystalline microstructure; Method of lines; Newton-Krylov methods; GRAIN-GROWTH; SIMULATION; SOLIDIFICATION; DIFFUSION; PLUTONIUM; EVOLUTION;
D O I
10.1016/j.jcp.2009.09.041
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We describe an algorithm for the numerical solution of a phase-field model (PFM) of microstructure evolution in polycrystalline materials. The PFM system of equations includes a local order parameter, a cluaternion representation of local orientation and a species composition parameter. The algorithm is based on the implicit integration of a semidiscretization of the PFM system using a backward difference formula (BDF) temporal discretization combined with a Newton-Krylov algorithm to solve the nonlinear system at each time step. The BDF algorithm is combined with a coordinate-projection method to maintain quaternion unit length, which is related to an important solution invariant. A key element of the Newton-Krylov algorithm is the selection of a preconclitioner to accelerate the convergence of the Generalized Minimum Residual algorithm used to solve the Jacobian linear system in each Newton step. Results are presented for the application of the algorithm to 2D and 3D examples. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:626 / 641
页数:16
相关论文
共 36 条
[21]   Phase-field model for binary alloys [J].
Kim, SG ;
Kim, WT ;
Suzuki, T .
PHYSICAL REVIEW E, 1999, 60 (06) :7186-7197
[22]   Modeling the formation and dynamics of polycrystals in 3D [J].
Kobayashi, R ;
Warren, JA .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 356 (01) :127-132
[23]   Equations with singular diffusivity [J].
Kobayashi, R ;
Giga, Y .
JOURNAL OF STATISTICAL PHYSICS, 1999, 95 (5-6) :1187-1220
[24]   A continuum model of grain boundaries [J].
Kobayashi, R ;
Warren, JA ;
Carter, WC .
PHYSICA D, 2000, 140 (1-2) :141-150
[25]  
Langer J. S., 1986, Directions in condensed matter physics. Memorial volume in honor of Sheng-keng Ma, P165
[26]   A diffuse interface model for microstructural evolution in elastically stressed solids [J].
Leo, PH ;
Lowengrub, JS ;
Jou, HJ .
ACTA MATERIALIA, 1998, 46 (06) :2113-2130
[27]   A phase-field paradigm for grain growth and recrystallization [J].
Lusk, MT .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1982) :677-700
[28]   Phase field modeling of polycrystalline freezing [J].
Pusztai, T ;
Bortel, G ;
Gránásy, L .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2005, 413 :412-417
[29]   Phase field theory of polycrystalline solidification in three dimensions [J].
Pusztai, T ;
Bortel, G ;
Gránásy, L .
EUROPHYSICS LETTERS, 2005, 71 (01) :131-137
[30]   Phase-field approach to polycrystalline solidification including heterogeneous and homogeneous nucleation [J].
Pusztai, Tamas ;
Tegze, Gyoergy ;
Toth, Gyula I. ;
Kornyei, Laszlo ;
Bansel, Gurvinder ;
Fan, Zhungyun ;
Granasy, Laszlo .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (40)