Gas-Phase Reactivity of Protonated 2-, 3-, and 4-Dehydropyridine Radicals Toward Organic Reagents

被引:21
作者
Adeuya, Anthony [1 ]
Price, Jason M. [1 ]
Jankiewicz, Bartlomiej J. [1 ]
Nash, John J. [1 ]
Kenttamaa, Hilkka I. [1 ]
机构
[1] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
基金
美国国家卫生研究院;
关键词
HYDROGEN-ATOM ABSTRACTION; MOLECULAR-ORBITAL METHODS; CHARGED PHENYL RADICALS; TRANSITION-STATE; BASIS-SETS; PHOTOINDUCED CLEAVAGE; BARRIER HEIGHTS; RATE CONSTANTS; DNA; DENSITY;
D O I
10.1021/jp901380y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To explore the effects of the electronic nature of charged phenyl radicals on their reactivity, reactions of the three distonic isomers of n-dehydropyridinium cation (n = 2, 3, or 4) have been investigated in the gas phase by using Fourier-transform ion cyclotron resonance mass spectrometry. All three isomers react with cyclohexane, methanol, ethanol, and I-pentanol exclusively via hydrogen atom abstraction and with allyl iodide mainly via iodine atom abstraction, with a reaction efficiency ordering of 2 > 3 > 4. The observed reactivity ordering correlates well with the calculated vertical electron affinities of the charged radicals (i.e., the higher the vertical electron affinity, the faster the reaction). Charged radicals 2 and 3 also react with tetrahydrofuran exclusively via hydrogen atom abstraction, but the reaction of 4 with tetrahydrofuran yields products arising from nonradical reactivity. The unusual reactivity of 4 is likely to result from the contribution of an ionized carbene-type resonance structure that facilitates nucleophilic addition to the most electrophilic carbon atom (C-4) in this charged radical. The influence of such a resonance structure oil the reactivity of 2 is not obvious, and this may be due to stabilizing hydrogen-bonding interactions in the transition states for this molecule. Charged radicals 2 and 3 abstract a hydrogen atom from the substituent in both phenol and toluene, but 4 abstracts a hydrogen atom from the phenyl ring, a reaction that is unprecedented for phenyl radicals. Charged radical 4 reacts with tert-butyl isocyanide mainly by hydrogen cyanide (HCN) abstraction, whereas CN abstraction is the principal reaction for 2 and 3. The different reactivity observed for 4 (as compared to 2 and 3) is likely to result from different charge and spin distributions of the reaction intermediates for these charged radicals.
引用
收藏
页码:13663 / 13674
页数:12
相关论文
共 90 条