Ensemble Classification Algorithm for Hyperspectral Remote Sensing Data

被引:44
作者
Chi, Mingmin [1 ]
Kun, Qian [1 ]
Benediktsson, Jon Atli [2 ]
Feng, Rui [1 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
[2] Univ Iceland, Fac Elect & Comp Engn, IS-107 Reykjavik, Iceland
关键词
Ensemble classification; hyperspectral remote sensing images; mixture of Gaussians (MoGs); support cluster machine (SCM);
D O I
10.1109/LGRS.2009.2024624
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In real applications, it is difficult to obtain a sufficient number of training samples in supervised classification of hyperspectral remote sensing images. Furthermore, the training samples may not represent the real distribution of the whole space. To attack these problems, an ensemble algorithm which combines generative (mixture of Gaussians) and discriminative (support cluster machine) models for classification is proposed. Experimental results carried out on hyperspectral data set collected by the reflective optics system imaging spectrometer sensor, validates the effectiveness of the proposed approach.
引用
收藏
页码:762 / 766
页数:5
相关论文
共 50 条
  • [31] Biomedical Data Ensemble Classification using Random Projections
    Tasoulis, Sotiris K.
    Vrahatis, Aristidis G.
    Georgakopoulos, Spiros V.
    Plagianakos, Vassilis P.
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 166 - 172
  • [32] Cost-sensitive ensemble classification algorithm for medical image
    Zhang, Minghui
    Pan, Haiwei
    Zhang, Niu
    Xie, Xiaoqin
    Zhang, Zhiqiang
    Feng, Xiaoning
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2018, 16 (03) : 282 - 288
  • [33] Semantic Segmentation of Hyperspectral Remote Sensing Images Based on PSE-UNet Model
    Li, Jiaju
    Wang, Hefeng
    Zhang, Anbing
    Liu, Yuliang
    SENSORS, 2022, 22 (24)
  • [34] Ensemble classification from deep predictions with test data augmentation
    Calvo-Zaragoza, Jorge
    Rico-Juan, Juan R.
    Gallego, Antonio-Javier
    SOFT COMPUTING, 2020, 24 (02) : 1423 - 1433
  • [35] An extension of iterative scaling for decision and data aggregation in ensemble classification
    Pal, Siddharth
    Miller, David J.
    JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2007, 48 (1-2): : 21 - 37
  • [36] An Extension of Iterative Scaling for Decision and Data Aggregation in Ensemble Classification
    Siddharth Pal
    David J. Miller
    The Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 2007, 48 : 21 - 37
  • [37] Ensemble classification from deep predictions with test data augmentation
    Jorge Calvo-Zaragoza
    Juan R. Rico-Juan
    Antonio-Javier Gallego
    Soft Computing, 2020, 24 : 1423 - 1433
  • [38] Ensemble classification for gene expression data based on parallel clustering
    Meng, Jun
    Jiang, Dingling
    Zhang, Jing
    Luan, Yushi
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2018, 20 (03) : 213 - 229
  • [39] Classification of Hyperspectral Data Using an AdaBoostSVM Technique Applied on Band Clusters
    Ramzi, Pouria
    Samadzadegan, Farhad
    Reinartz, Peter
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (06) : 2066 - 2079
  • [40] Hybrid Ensemble Classification of Tree Genera Using Airborne LiDAR Data
    Ko, Connie
    Sohn, Gunho
    Remmel, Tarmo K.
    Miller, John
    REMOTE SENSING, 2014, 6 (11) : 11225 - 11243