Ensemble Classification Algorithm for Hyperspectral Remote Sensing Data

被引:44
作者
Chi, Mingmin [1 ]
Kun, Qian [1 ]
Benediktsson, Jon Atli [2 ]
Feng, Rui [1 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
[2] Univ Iceland, Fac Elect & Comp Engn, IS-107 Reykjavik, Iceland
关键词
Ensemble classification; hyperspectral remote sensing images; mixture of Gaussians (MoGs); support cluster machine (SCM);
D O I
10.1109/LGRS.2009.2024624
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In real applications, it is difficult to obtain a sufficient number of training samples in supervised classification of hyperspectral remote sensing images. Furthermore, the training samples may not represent the real distribution of the whole space. To attack these problems, an ensemble algorithm which combines generative (mixture of Gaussians) and discriminative (support cluster machine) models for classification is proposed. Experimental results carried out on hyperspectral data set collected by the reflective optics system imaging spectrometer sensor, validates the effectiveness of the proposed approach.
引用
收藏
页码:762 / 766
页数:5
相关论文
共 10 条
[1]  
AKINORI F, 2008, IEEE T PATTERN ANAL, V30, P424
[2]  
BANDOS T, 2006, P IGARSS DENV CO JUL, P3883
[3]   Multiple classifiers applied to multisource remote sensing data [J].
Briem, GJ ;
Benediktsson, JA ;
Sveinsson, JR .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2002, 40 (10) :2291-2299
[4]   Semisupervised classification of hyperspectral images by SVMs optimized in the primal [J].
Chi, Mingmin ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (06) :1870-1880
[5]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[6]  
Jebara T, 2004, J MACH LEARN RES, V5, P819
[7]  
JEON B, 1990, P IEEE INT GEOSC REM, P2363
[8]  
LI B, 2007, P 24 INT C MACH LEAR, P505
[9]  
Schlkopf B., 2002, Learning with Kernels
[10]   THE EFFECT OF UNLABELED SAMPLES IN REDUCING THE SMALL SAMPLE-SIZE PROBLEM AND MITIGATING THE HUGHES PHENOMENON [J].
SHAHSHAHANI, BM ;
LANDGREBE, DA .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1994, 32 (05) :1087-1095