A model for predicting the steady-state flow stress in ultrafine-grained and nanocrystalline face-centred cubic metals based on irreversible thermodynamics is presented. Grain size, temperature and strain-rate effects are incorporated. Nanoscale effects are accounted for via dislocation propagation and annihilation mechanisms invoking an Orowan-type dislocation glide mechanism, and a vacancy-mediated annihilation mechanism at the interface, respectively. Model predictions show good agreement with experiments for pure Cu and Al. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1113 / 1116
页数:4
相关论文
共 20 条
[1]
[Anonymous], 2013, Physical Foundations of Materials Science, DOI DOI 10.1007/978-3-662-09291-0
机构:
Univ Erlangen Nurnberg, Dept Mat Sci & Engn, Ins Gen Mat Properties 1, D-91058 Erlangen, GermanyUniv Erlangen Nurnberg, Dept Mat Sci & Engn, Ins Gen Mat Properties 1, D-91058 Erlangen, Germany
Blum, W.
Zeng, X. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Erlangen Nurnberg, Dept Mat Sci & Engn, Ins Gen Mat Properties 1, D-91058 Erlangen, GermanyUniv Erlangen Nurnberg, Dept Mat Sci & Engn, Ins Gen Mat Properties 1, D-91058 Erlangen, Germany
机构:
Univ Erlangen Nurnberg, Dept Mat Sci & Engn, Ins Gen Mat Properties 1, D-91058 Erlangen, GermanyUniv Erlangen Nurnberg, Dept Mat Sci & Engn, Ins Gen Mat Properties 1, D-91058 Erlangen, Germany
Blum, W.
Zeng, X. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Erlangen Nurnberg, Dept Mat Sci & Engn, Ins Gen Mat Properties 1, D-91058 Erlangen, GermanyUniv Erlangen Nurnberg, Dept Mat Sci & Engn, Ins Gen Mat Properties 1, D-91058 Erlangen, Germany