An Automatic Differentiation Based Approach to the Level Set Method

被引:0
作者
Toivanen, Jukka I. [1 ]
机构
[1] Univ Jyvaskyla, Dept Math Informat Technol, 35 Agora, Jyvaskyla 40014, Finland
来源
MATHEMATICAL MODELING AND OPTIMIZATION OF COMPLEX STRUCTURES | 2016年 / 40卷
关键词
Automatic differentiation; Level set method; Topology optimization; TOPOLOGY OPTIMIZATION; SENSITIVITY-ANALYSIS; SHAPE; SPARSE;
D O I
10.1007/978-3-319-23564-6_4
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper discusses an implementation of the parametric level set method. Adjoint approach is used to perform the sensitivity analysis, but contrary to standard implementations, the state problem is differentiated in its discretized form. The required partial derivatives are computed using tools of automatic differentiation, which avoids the need to derive the adjoint problem from the governing partial differential equation. The augmented Lagrangian approach is used to enforce volume constraints, and a gradient based optimization method is used to solve the subproblems. Applicability of the method is demonstrated by repeating well known compliance minimization studies of a cantilever beam and a Michell type structure. The obtained topologies are in good agreement with reference results.
引用
收藏
页码:43 / 57
页数:15
相关论文
共 23 条
[1]   Structural optimization using sensitivity analysis and a level-set method [J].
Allaire, G ;
Jouve, F ;
Toader, AM .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 194 (01) :363-393
[2]  
[Anonymous], 2008, EVALUATING DERIVATIV
[3]  
Bendse Martin P., 1989, Struct Optim, V1, P193, DOI [DOI 10.1007/BF01650949, 10.1007/BF01650949]
[4]   Efficient computation of gradients and Jacobians by dynamic exploitation of sparsity in automatic differentiation [J].
Bischof, CH ;
Khademi, PM ;
Bouaricha, A ;
Carle, A .
OPTIMIZATION METHODS & SOFTWARE, 1996, 7 (01) :1-39
[5]   Sensitivity analysis of turbulence models using automatic differentiation [J].
Bischof, CH ;
Bücker, HM ;
Rasch, A .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 26 (02) :510-522
[6]   A survey in mathematics for industry - A survey on level set methods for inverse problems and optimal design [J].
Burger, M ;
Osher, SJ .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2005, 16 :263-301
[7]   Level set topology optimization of fluids in Stokes flow [J].
Challis, Vivien J. ;
Guest, James K. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 79 (10) :1284-1308
[8]   Mesh deformation based on radial basis function interpolation [J].
de Boer, A. ;
van der Schoot, M. S. ;
Bijl, H. .
COMPUTERS & STRUCTURES, 2007, 85 (11-14) :784-795
[9]   A supernodal approach to sparse partial pivoting [J].
Demmel, JW ;
Eisenstat, SC ;
Gilbert, JR ;
Li, XYS ;
Liu, JWH .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 20 (03) :720-755
[10]  
Haslinger J., 2003, ADV DESIGN CONTROL