Inner products involving differences:: The Meixner-Sobolev polynomials

被引:11
作者
Area, I
Godoy, E
Marcellán, F
机构
[1] Univ Vigo, ETSI Ind & Minas, Dept Mat Aplicada, Vigo 36200, Spain
[2] Univ Carlos III Madrid, Escuela Politecn Super, Dept Matemat, Madrid 28911, Spain
关键词
Meixner polynomials; Sobolev orthogonal polynomials; difference operators; Pollaczek polynomials; zeros of orthogonal polynomials; polynomial approximation;
D O I
10.1080/10236190008808211
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, polynomials which are orthogonal with respect to the inner product [p, q](S) = Sigma(s=0)(infinity)p(s)q(s) (mu(s)Gamma(gamma + s))/(Gamma(s + 1)Gamma(gamma)) + lambda Sigma(s=0)(infinity)Delta p(s)Delta q(s) (mu(s)Gamma(gamma + s))/(Gamma(s + 1)Gamma(gamma)), where 0 < mu < 1, gamma > 0 and lambda greater than or equal to 0 are studied. For these polynomials, algebraic properties and difference equations are obtained as well as their relation with the Meixner polynomials. Moreover, some properties about the zeros of these polynomials are deduced.
引用
收藏
页码:1 / 31
页数:31
相关论文
共 26 条
[1]   ON ORTHOGONAL POLYNOMIALS OF SOBOLEV TYPE - ALGEBRAIC PROPERTIES AND ZEROS [J].
ALFARO, M ;
MARCELLAN, F ;
REZOLA, ML ;
RONVEAUX, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (03) :737-757
[2]  
[Anonymous], 1991, CLASSICAL ORTHOGONAL, DOI DOI 10.1007/978-3-642-74748-9
[3]   Minimal recurrence relations for connection coefficients between classical orthogonal polynomials: Discrete case (vol 87, pg 321, 1996) [J].
Area, I ;
Godoy, E ;
Ronveaux, A ;
Zarzo, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 89 (02) :309-325
[4]  
AREA L, UNPUB COHERENT PAIRS
[5]  
BRENNER J, 1972, P C CONSTRUCTIVE THE, P77
[6]  
Chihara T, 1978, INTRO ORTHOGONAL POL
[7]  
COHEN EA, 1975, SIAM J MATH ANAL, V6, P105, DOI 10.1137/0506011
[8]  
de Bruin M.G., 1995, ANN NUMER MATH, V2, P233
[9]   ON RECURRENCE RELATIONS FOR SOBOLEV ORTHOGONAL POLYNOMIALS [J].
EVANS, WD ;
LITTLEJOHN, LL ;
MARCELLAN, F ;
MARKETT, C ;
RONVEAUX, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1995, 26 (02) :446-467
[10]   A DISTRIBUTIONAL STUDY OF DISCRETE CLASSICAL ORTHOGONAL POLYNOMIALS [J].
GARCIA, AG ;
MARCELLAN, F ;
SALTO, L .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1995, 57 (1-2) :147-162