SOLID-STATE SINTERING OF (K0.5Na0.5)NbO3 SYNTHESIZED FROM AN ALKALI-CARBONATE-BASED LOW-TEMPERATURE CALCINED POWDER

被引:5
作者
Feizpour, Mahdi [1 ]
Ebadzadeh, Touradj [1 ]
Jenko, Darja [2 ]
机构
[1] Mat & Energy Res Ctr, Dept Ceram Engn, Karaj, Alborz, Iran
[2] Inst Met & Technol, Ljubljana 1000, Slovenia
来源
MATERIALI IN TEHNOLOGIJE | 2015年 / 49卷 / 06期
关键词
potassium sodium niobate; low-temperature calcination; solid-state synthesis; sintering; microstructure; SODIUM-POTASSIUM NIOBATE; ELECTRICAL-PROPERTIES; VAPOR-PRESSURE; MICROSTRUCTURE; PIEZOCERAMICS; CERAMICS; EXCESS;
D O I
10.17222/mit.2015.315
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Potassium sodium niobate K0.5Na0.5NbO3 (KNN) was synthesized by the double calcination of a homogenized mixture of potassium and sodium carbonates and niobium pentoxide for 4 h at 625 degrees C. The calcination temperature was chosen on the basis of the thermal analyses of the mixture of precursors, where the weight loss being the function of the temperature reaches the plateau. The calcined powder was investigated by X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) and was found to be without unreacted materials or secondary phases. Before sintering, the powder compacts were annealed for 4 h at 450 degrees C, while the sintering was carried out for 2 h at 1115 degrees C using two different configurations: 1) in a closed crucible where the KNN pellets were in close physical proximity to, but not in direct contact with, the KNN packing powder, and 2) in a completely open crucible without any packing powder. The Archimedes' density of the sintered samples was 91.5 % of theoretical density for the first configuration, while it was 93.4 % for the second configuration. The Field-Emission Scanning Electron Microscopy (FE-SEM) and XRD analyses of the sintered ceramics showed that by using a calcination temperature as low as 625 degrees C a typical sintered microstructure of KNN could be achieved with both sintering configurations.
引用
收藏
页码:975 / 982
页数:8
相关论文
共 26 条
[1]   Microstructure of sodium-potassium niobate ceramics sintered under high alkaline vapor pressure atmosphere [J].
Acker, Jerome ;
Kungl, Hans ;
Schierholz, Roland ;
Wagner, Susanne ;
Eichel, Ruediger-A. ;
Hoffmann, Michael J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2014, 34 (16) :4213-4221
[2]   Influence of Alkaline and Niobium Excess on Sintering and Microstructure of Sodium-Potassium Niobate (K0.5 Na0.5)NbO3 [J].
Acker, Jerome ;
Kungl, Hans ;
Hoffmann, Michael J. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2010, 93 (05) :1270-1281
[3]   Effect of calcination conditions and excess alkali carbonate on the phase formation and particle morphology of Na0.5K0.5NbO3 powders [J].
Bomlai, Pornsuda ;
Wichianrat, Pattraporn ;
Muensit, Supasarute ;
Milne, Steven J. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2007, 90 (05) :1650-1655
[4]   WHAT CAN BE EXPECTED FROM LEAD-FREE PIEZOELECTRIC MATERIALS? [J].
Damjanovic, Dragan ;
Klein, Naama ;
Li, Jin ;
Porokhonskyy, Viktor .
FUNCTIONAL MATERIALS LETTERS, 2010, 3 (01) :5-13
[5]   Sintering of sub-micron K0.5Na0.5NbO3 powders fabricated by spray pyrolysis [J].
Haugen, Astri Bjornetun ;
Madaro, Francesco ;
Bjorkeng, Lars-Petter ;
Grande, Tor ;
Einarsrud, Mari-Ann .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (05) :1449-1457
[6]   The influence of different niobium pentoxide precursors on the solid-state synthesis of potassium sodium niobate [J].
Hrescak, Jitka ;
Bencan, Andreja ;
Rojac, Tadej ;
Malic, Barbara .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2013, 33 (15-16) :3065-3075
[7]  
Jaffe B, 2012, Piezoelectric ceramics
[8]   Electron microscopy studies of potassium sodium niobate ceramics [J].
Jenko, D ;
Bencan, A ;
Malic, B ;
Holc, J ;
Kosec, M .
MICROSCOPY AND MICROANALYSIS, 2005, 11 (06) :572-580
[9]  
K S, 2009, APEX 2, V11
[10]   (K,Na)NbO3-Based Multilayer Piezoelectric Ceramics with Nickel Inner Electrodes [J].
Kawada, Shinichiro ;
Kimura, Masahiko ;
Higuchi, Yukio ;
Takagi, Hiroshi .
APPLIED PHYSICS EXPRESS, 2009, 2 (11)