Overexpression of a Metallothionein 2A Gene from Date Palm Confers Abiotic Stress Tolerance to Yeast and Arabidopsis thaliana

被引:51
|
作者
Patankar, Himanshu V. [1 ]
Al-Harrasi, Ibtisam [1 ]
Al Kharusi, Latifa [1 ]
Jana, Gerry Aplang [1 ]
Al-Yahyai, Rashid [2 ]
Sunkar, Ramanjulu [3 ]
Yaish, Mahmoud W. [1 ]
机构
[1] Sultan Qaboos Univ, Coll Sci, Dept Biol, POB 36, Muscat 123, Oman
[2] Sultan Qaboos Univ, Coll Agr & Marine Sci, Dept Crop Sci, POB 34, Muscat 123, Oman
[3] Oklahoma State Univ, Dept Biochem & Mol Biol, Stillwater, OK 74078 USA
关键词
metallothionein; abiotic stress; date palm; salinity; drought; functional characterization; FUNCTIONAL-CHARACTERIZATION; SACCHAROMYCES-CEREVISIAE; SALINITY; EXPRESSION; PROTEIN; CLONING; BINDING; FAMILY; RICE; SUPEROXIDE;
D O I
10.3390/ijms20122871
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Although the date palm tree is an extremophile with tolerance to drought and certain levels of salinity, the damage caused by extreme salt concentrations in the soil, has created a need to explore stress-responsive traits and decode their mechanisms. Metallothioneins (MTs) are low-molecular-weight cysteine-rich proteins that are known to play a role in decreasing oxidative damage during abiotic stress conditions. Our previous study identified date palm metallothionein 2A (PdMT2A) as a salt-responsive gene, which has been functionally characterized in yeast and Arabidopsis in this study. The recombinant PdMT2A protein produced in Escherichia coli showed high reactivity against the substrate 5 '-dithiobis-2-nitrobenzoic acid (DTNB), implying that the protein has the property of scavenging reactive oxygen species (ROS). Heterologous overexpression of PdMT2A in yeast (Saccharomyces cerevisiae) conferred tolerance to drought, salinity and oxidative stresses. The PdMT2A gene was also overexpressed in Arabidopsis, to assess its stress protective function in planta. Compared to the wild-type control, the transgenic plants accumulated less Na+ and maintained a high K+/Na+ ratio, which could be attributed to the regulatory role of the transgene on transporters such as HKT, as demonstrated by qPCR assay. In addition, transgenic lines exhibited higher chlorophyll content, higher superoxide dismutase (SOD) activity and improved scavenging ability for reactive oxygen species (ROS), coupled with a better survival rate during salt stress conditions. Similarly, the transgenic plants also displayed better drought and oxidative stress tolerance. Collectively, both in vitro and in planta studies revealed a role for PdMT2A in salt, drought, and oxidative stress tolerance.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Overexpression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana
    Masand, Shikha
    Yadav, Sudesh Kumar
    MOLECULAR BIOLOGY REPORTS, 2016, 43 (02) : 53 - 64
  • [2] Overexpression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana
    Shikha Masand
    Sudesh Kumar Yadav
    Molecular Biology Reports, 2016, 43 : 53 - 64
  • [3] Overexpression of KcNHX1 gene confers tolerance to multiple abiotic stresses in Arabidopsis thaliana
    Yanqin Wang
    Yuan Guo
    Fen Li
    Yanping Liu
    Shuangxia Jin
    Journal of Plant Research, 2021, 134 : 613 - 623
  • [4] Overexpression of KcNHX1 gene confers tolerance to multiple abiotic stresses in Arabidopsis thaliana
    Wang, Yanqin
    Guo, Yuan
    Li, Fen
    Liu, Yanping
    Jin, Shuangxia
    JOURNAL OF PLANT RESEARCH, 2021, 134 (03) : 613 - 623
  • [5] Overexpression of lycopene ε-cyclase gene from lycium chinense confers tolerance to chilling stress in Arabidopsis thaliana
    Song, Xinyu
    Diao, Jinjin
    Ji, Jing
    Wang, Gang
    Li, Zhaodi
    Wu, Jiang
    Josine, Tchouopou Lontchi
    Wang, Yurong
    GENE, 2016, 576 (01) : 395 - 403
  • [6] Overexpression of Chickpea Defensin Gene Confers Tolerance to Water-Deficit Stress in Arabidopsis thaliana
    Kumar, Manoj
    Yusuf, Mohd Aslam
    Yadav, Pooja
    Narayan, Shiv
    Kumar, Manoj
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [7] Overexpression of VOZ2 confers biotic stress tolerance but decreases abiotic stress resistance in Arabidopsis
    Nakai, Yusuke
    Fujiwara, Sumire
    Kubo, Yasuyuki
    Sato, Masa H.
    PLANT SIGNALING & BEHAVIOR, 2013, 8 (03) : e23358.1 - e23358.3
  • [8] Functional Characterization of Date Palm Aquaporin Gene PdPIP1;2 Confers Drought and Salinity Tolerance to Yeast and Arabidopsis
    Patankar, Himanshu V.
    Al-Harrasi, Ibtisam
    Al-Yahyai, Rashid
    Yaish, Mahmoud W.
    GENES, 2019, 10 (05)
  • [9] Overexpression of the Aldehyde Dehydrogenase Gene ZmALDH Confers Aluminum Tolerance in Arabidopsis thaliana
    Du, Han-Mei
    Liu, Chan
    Jin, Xin-Wu
    Du, Cheng-Feng
    Yu, Yan
    Luo, Shuai
    He, Wen-Zhu
    Zhang, Su-Zhi
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (01)
  • [10] The expression of alfalfa MsPP2CA1 gene confers ABA sensitivity and abiotic stress tolerance on Arabidopsis thaliana
    Dong, Wei
    Liu, Xijiang
    Lv, Jiao
    Gao, Tianxue
    Song, Yuguang
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2019, 143 : 176 - 182