Tuning the Seebeck coefficient of naphthalenediimide by electrochemical gating and doping

被引:16
作者
Al-Galiby, Qusiy H. [1 ,2 ]
Sadeghi, Hatef [1 ]
Manrique, David Zsolt [3 ]
Lambert, Colin J. [1 ]
机构
[1] Univ Lancaster, Dept Phys, Lancaster LA1 4YB, England
[2] Univ Al Qadisiyah, Coll Educ, Dept Phys, Al Diwaniyah 58002, Iraq
[3] UCL, Photon Grp, Dept Elect & Elect Engn, London, England
基金
英国工程与自然科学研究理事会;
关键词
THERMOELECTRIC PROPERTIES; THERMOPOWER; ENHANCEMENT;
D O I
10.1039/c7nr00571g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We investigate the sign and magnitude of the single-molecule Seebeck coefficient of naphthalenediimide (NDI) under the influence of electrochemical gating and doping. The molecule consists of a NDI core with two alkyl chains in the bay-area position, connected to gold electrodes via benzothiophene (DBT) anchor groups. By switching between the neutral, radical and di-anion charge states, we are able to tune the molecular energy levels relative to the Fermi energy of the electrodes. The resulting single-molecule room-temperature Seebeck coefficents of the three charge states are -294.5 mu V K-1, 122 mu V K-1 and 144 mu V K-1 respectively and the room-temperature power factors are 4.4 x 10(-5) W m(-1) K-2, 3 x 10(-5) Wm(-1) K-2 and 8.2 x 10(-4) Wm(-1) K-2. As a further strategy for optimising thermoelectric properties, we also investigate the effect on both phonon and electron transport of doping the NDI with either an electron donor (TTF) or an electron acceptor (TCNE). We find that doping by TTF increases the room-temperature Seebeck coefficient and power factor from -73.7 mu V K-1 and 2.6 x 10(-7) W m(-1) K-2 for bare NDI to -105 mu V K-1 and 3.6 x 10(-4) W m(-1) K-2 in presence of TTF. The low thermal conductance of NDI-TTF, combined with the higher Seebeck coefficient and higher electrical conductance lead to a maximum thermoelectric figure of merit of ZT = 1.2, which is higher than that of bare NDI in several orders of magnitude. This demonstrates that both the sign and magnitude of NDI Seebeck coefficient can be tuned reversibly by electrochemical gating and doping, suggesting that such redox active molecules are attractive materials for ultra-thin-film thermoelectric devices.
引用
收藏
页码:4819 / 4825
页数:7
相关论文
共 33 条
[1]   Tuning the thermoelectric properties of metallo-porphyrins [J].
Al-Galiby, Qusiy H. ;
Sadeghi, Hatef ;
Algharagholy, Laith A. ;
Grace, Iain ;
Lambert, Colin .
NANOSCALE, 2016, 8 (04) :2428-2433
[2]   Tuning the Thermoelectric Properties of Conducting Polymers in an Electrochemical Transistor [J].
Bubnova, Olga ;
Berggren, Magnus ;
Crispin, Xavier .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (40) :16456-16459
[3]   Engineering the Thermopower of C60 Molecular Junctions [J].
Evangeli, Charalambos ;
Gillemot, Katalin ;
Leary, Edmund ;
Teresa Gonzalez, M. ;
Rubio-Bollinger, Gabino ;
Lambert, Colin J. ;
Agrait, Nicolas .
NANO LETTERS, 2013, 13 (05) :2141-2145
[4]   GOLLUM: a next-generation simulation tool for electron, thermal and spin transport [J].
Ferrer, J. ;
Lambert, C. J. ;
Garcia-Suarez, V. M. ;
Manrique, D. Zs ;
Visontai, D. ;
Oroszlany, L. ;
Rodriguez-Ferradas, R. ;
Grace, I. ;
Bailey, S. W. D. ;
Gillemot, K. ;
Sadeghi, Hatef ;
Algharagholy, L. A. .
NEW JOURNAL OF PHYSICS, 2014, 16
[5]   Recent advances in thermoelectric materials [J].
Gayner, Chhatrasal ;
Kar, Kamal K. .
PROGRESS IN MATERIALS SCIENCE, 2016, 83 :330-382
[6]  
Hicks I. D., 1993, PHYS REV B, V47, P8
[7]   EFFECT OF QUANTUM-WELL STRUCTURES ON THE THERMOELECTRIC FIGURE OF MERIT [J].
HICKS, LD ;
DRESSELHAUS, MS .
PHYSICAL REVIEW B, 1993, 47 (19) :12727-12731
[8]   Thermoelectric plastics: from design to synthesis, processing and structure-property relationships [J].
Kroon, Renee ;
Mengistie, Desalegn Alemu ;
Kiefer, David ;
Hynynen, Jonna ;
Ryan, Jason D. ;
Yu, Liyang ;
Muller, Christian .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (22) :6147-6164
[9]   Basic concepts of quantum interference and electron transport in single-molecule electronics [J].
Lambert, C. J. .
CHEMICAL SOCIETY REVIEWS, 2015, 44 (04) :875-888
[10]  
Lambert C. J., 2016, CR PHYS, V1, P1