Radioxenon net count calculations revisited

被引:21
作者
Cooper, Matthew W. [1 ]
Auer, Matthias [2 ]
Bowyer, Theodore W. [1 ]
Casey, Leslie A. [3 ]
Elmgren, Klas [4 ]
Ely, James H. [1 ]
Foxe, Michael P. [1 ]
Gheddou, Abdelhakim [4 ]
Gohla, Herbert [4 ]
Hayes, James C. [1 ]
Johnson, Christine M. [1 ]
Kalinowski, Martin [4 ]
Klingberg, Franziska J. [4 ]
Liu, Boxue [4 ]
Mayer, Michael F. [1 ]
McIntyre, Justin I. [1 ]
Plenteda, Romano [4 ]
Popov, Vladimir [4 ]
Zahringer, Matthias [5 ]
机构
[1] Pacific Northwest Natl Lab, 902 Battelle Blvd, Richland, WA 99354 USA
[2] Instrumental Software Technol Inc, 77 Van Dam St,Suite 9, Saratoga Springs, NY 12866 USA
[3] Natl Nucl Secur Adm, 1000 Independence Ave SW, Washington, DC 20585 USA
[4] Vienna Int Ctr, Comprehens Nucl Test Ban Treaty Org, POB 1200, A-1400 Vienna, Austria
[5] BfS, Rosastr 9, D-79098 Freiburg, Germany
关键词
Beta-gamma analysis; Net count calculation; Spectral regions-of-interest; Comprehensive Nuclear-Test-Ban Treaty; Radioxenon; Noble gas; SYSTEM; DETECTORS; RESOLUTION; ISOTOPES; LIMITS;
D O I
10.1007/s10967-019-06565-y
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Since 1998, there have been improvements in the capability to detect atmospheric radioxenon in the International Monitoring System operated by the Preparatory Commission of the Comprehensive Nuclear-Test-Ban Treaty Organization. The upgrades have resulted in next-generation versions of the radioxenon systems. This paper explores radioxenon data analysis improvements beyond the original radioxenon beta-gamma analysis equations that were formulated in 2000. Additionally, it provides recommendations to further improve analysis and refine the equations. The areas of improvement are described in terms of equations, physical detectors, and field-testing. These recommendations are provided with the intention of improving accuracy and precision of radioxenon measurements.
引用
收藏
页码:369 / 382
页数:14
相关论文
共 46 条
[1]  
[Anonymous], 2018, ATOMIC ENERGY
[2]  
Axelsson A., 2003, FOIR0913SE SWED DEF
[3]  
Biegalski KMF, 2001, J RADIOANAL NUCL CH, V248, P673
[4]   SDAT implementation for the analysis of radioxenon β-γ coincidence spectra [J].
Biegalski, S. ;
Flory, A. ;
Haas, D. ;
Ely, J. ;
Cooper, M. .
JOURNAL OF RADIOANALYTICAL AND NUCLEAR CHEMISTRY, 2013, 296 (01) :471-476
[5]   Memory effect, resolution, and efficiency measurements of an Al2O3 coated plastic scintillator used for radioxenon detection [J].
Blackberg, L. ;
Fritioff, T. ;
Martensson, L. ;
Nielsen, F. ;
Ringbom, A. ;
Sjostrand, H. ;
Klintenberg, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2013, 714 :128-135
[6]   Investigations of surface coatings to reduce memory effect in plastic scintillator detectors used for radioxenon detection [J].
Blackberg, L. ;
Fay, A. ;
Jogi, I. ;
Biegalski, S. ;
Boman, M. ;
Elmgren, K. ;
Fritioff, T. ;
Johansson, A. ;
Martensson, L. ;
Nielsen, F. ;
Ringbom, A. ;
Rooth, M. ;
Sjostrand, H. ;
Klintenberg, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2011, 656 (01) :84-91
[7]  
Blackberg L, 2012, PHYS SCR
[8]   On the use of 127Xe standards for the quality control of CTBTO noble gas stations and support laboratories [J].
Cagniant, A. ;
Le Petit, G. ;
Nadalut, B. ;
Gross, P. ;
Richard-Bressand, H. ;
Fontaine, J. -P. ;
Douysset, G. .
APPLIED RADIATION AND ISOTOPES, 2014, 89 :176-185
[9]  
Cooper M.W., 2016, PNNL25418
[10]  
Cooper MW, 2008, 30 MONITORING RES RE