Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31

被引:509
作者
Proust, Gwenaelle [1 ,2 ]
Tome, Carlos N. [2 ]
Jain, Ashutosh [3 ]
Agnew, Sean R. [3 ]
机构
[1] Univ Sydney, Sch Civil Engn, Sydney, NSW 2006, Australia
[2] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[3] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA
基金
美国国家科学基金会;
关键词
Twinning; Polycrystal modeling; Hardening; Hexagonal materials; Magnesium; FINITE-ELEMENT ANALYSIS; HCP METALS; MECHANICAL RESPONSE; HARDENING EVOLUTION; TEXTURE DEVELOPMENT; MG ALLOY; NEUTRON-DIFFRACTION; PLASTIC-DEFORMATION; ELECTRON-MICROSCOPE; HEXAGONAL MATERIALS;
D O I
10.1016/j.ijplas.2008.05.005
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Hexagonal materials deform plastically by activating diverse slip and twinning modes. The activation of such modes depends on their relative critical stresses, and the orientation of the crystals with respect to the loading direction. To be reliable, a constitutive description of these materials has to account for texture evolution associated with reorientations due to both dislocation slip and twinning, and for the effect of the twin boundaries as barriers to dislocation propagation. We extend a previously introduced twin model, which accounts explicitly for the composite character of the grain formed by a matrix with embedded twin lamellae, to describe the influence of twinning on the mechanical behavior of the material. The role of the twins as barriers to dislocations is explicitly incorporated into the hardening description of slip deformation via a directional Hall-Petch mechanism. We introduce here an improved hardening law for twinning, which discriminates for specific twin/dislocation interactions, and a detwinning mechanism. We apply this model to the interpretation of compression and tension experiments done in rolled magnesium alloy AZ31B at room temperature. Particularly challenging cases involve strain-path changes that force strong interactions between twinning, detwinning, and slip mechanisms. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:861 / 880
页数:20
相关论文
共 57 条
[1]   Validating a polycrystal model for the elastoplastic response of magnesium alloy AZ31 using in situ neutron diffraction [J].
Agnew, S. R. ;
Brown, D. W. ;
Tome, C. N. .
ACTA MATERIALIA, 2006, 54 (18) :4841-4852
[2]   Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B [J].
Agnew, SR ;
Duygulu, Ö .
INTERNATIONAL JOURNAL OF PLASTICITY, 2005, 21 (06) :1161-1193
[3]   Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling [J].
Agnew, SR ;
Tomé, CN ;
Brown, DW ;
Holden, TM ;
Vogel, SC .
SCRIPTA MATERIALIA, 2003, 48 (08) :1003-1008
[4]   Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y [J].
Agnew, SR ;
Yoo, MH ;
Tomé, CN .
ACTA MATERIALIA, 2001, 49 (20) :4277-4289
[5]   Non-basal slips in magnesium and magnesium-lithium alloy single crystals [J].
Ando, S ;
Tonda, H .
MAGNESIUM ALLOYS 2000, 2000, 350-3 :43-48
[6]  
Avedesian M.M., 1999, ASM SPECIALITY HDB
[7]   Twinning and the ductility of magnesium alloys Part I: "Tension" twins [J].
Barnett, M. R. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 464 (1-2) :1-7
[8]   Twinning and the ductility of magnesium alloys Part II. "Contraction" twins [J].
Barnett, M. R. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 464 (1-2) :8-16
[9]   A semianalytical Sachs model for the flow stress of a magnesium alloy [J].
Barnett, M. R. ;
Keshavarz, Z. ;
Ma, X. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2006, 37A (07) :2283-2293
[10]   The transformation of slip dislocations during twinning of copper-aluminum alloy crystals [J].
Basinski, ZS ;
Szczerba, MS ;
Niewczas, M ;
Embury, JD ;
Basinski, SJ .
REVUE DE METALLURGIE-CAHIERS D INFORMATIONS TECHNIQUES, 1997, 94 (09) :1037-1043