Sensitivity analysis of differential-algebraic equations and partial differential equations

被引:62
作者
Petzold, Linda [1 ]
Li, Shengtai
Cao, Yang
Serban, Radu
机构
[1] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] Virginia Tech, Dept Comp Sci, Blacksburg, VA 24061 USA
[4] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA
基金
美国国家科学基金会;
关键词
sensitivity analysis; differential-algebraic equations; adjoint method;
D O I
10.1016/j.compchemeng.2006.05.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Sensitivity analysis generates essential information for model development, design optimization, parameter estimation, optimal control, model reduction and experimental design. In this paper we describe the forward and adjoint methods for sensitivity analysis, and outline some of our recent work on theory, algorithms and software for sensitivity analysis of differential-algebraic equation (DAE) and time-dependent partial differential equation (PDE) systems. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1553 / 1559
页数:7
相关论文
共 50 条
[41]   An α-Model Parametrization Algorithm for Optimization with Differential-Algebraic Equations [J].
Drag, Pawel .
APPLIED SCIENCES-BASEL, 2022, 12 (02)
[42]   Aspects of modeling dynamical systems by differential-algebraic equations [J].
Müller, PC .
MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2001, 7 (02) :133-143
[43]   Model predictive control for singular differential-algebraic equations [J].
Ilchmann, Achim ;
Witschel, Jonas ;
Worthmann, Karl .
INTERNATIONAL JOURNAL OF CONTROL, 2022, 95 (08) :2141-2150
[44]   A Hopf bifurcation theorem for singular differential-algebraic equations [J].
Beardmore, R. ;
Webster, K. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 79 (04) :1383-1395
[45]   On Realizing Differential-Algebraic Equations by Rational Dynamical Systems [J].
Pavlov, Dmitrii ;
Pogudin, Gleb .
PROCEEDINGS OF THE 2022 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, ISSAC 2022, 2022, :119-128
[46]   On geometric and differentiation index of nonlinear differential-algebraic equations [J].
Chen, Yahao ;
Trenn, Stephan .
IFAC PAPERSONLINE, 2021, 54 (09) :186-191
[47]   On higher index differential-algebraic equations in infinite dimensions [J].
Trostorff, Sascha ;
Waurick, Marcus .
DIVERSITY AND BEAUTY OF APPLIED OPERATOR THEORY, 2018, 268 :477-486
[48]   A new software package for linear differential-algebraic equations [J].
Kunkel, P ;
Mehrmann, V ;
Rath, W ;
Weickert, J .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1997, 18 (01) :115-138
[49]   On parameter and state estimation for linear differential-algebraic equations [J].
Gerdin, Markus ;
Schoen, Thomas B. ;
Glad, Torkel ;
Gustafsson, Fredrik ;
Ljung, Lennart .
AUTOMATICA, 2007, 43 (03) :416-425
[50]   The Index and Split Forms of Linear Differential-Algebraic Equations [J].
Bulatov, M., V ;
Chistyakov, V. F. .
BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2019, 28 :21-35