Sensitivity analysis of differential-algebraic equations and partial differential equations

被引:61
作者
Petzold, Linda [1 ]
Li, Shengtai
Cao, Yang
Serban, Radu
机构
[1] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] Virginia Tech, Dept Comp Sci, Blacksburg, VA 24061 USA
[4] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA
基金
美国国家科学基金会;
关键词
sensitivity analysis; differential-algebraic equations; adjoint method;
D O I
10.1016/j.compchemeng.2006.05.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Sensitivity analysis generates essential information for model development, design optimization, parameter estimation, optimal control, model reduction and experimental design. In this paper we describe the forward and adjoint methods for sensitivity analysis, and outline some of our recent work on theory, algorithms and software for sensitivity analysis of differential-algebraic equation (DAE) and time-dependent partial differential equation (PDE) systems. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1553 / 1559
页数:7
相关论文
共 50 条
[21]   ADJOINT SENSITIVITY ANALYSIS FOR DIFFERENTIAL-ALGEBRAIC EQUATIONS: THE ADJOINT DAE SYSTEM AND ITS NUMERICAL SOLUTION [J].
Cao, Yang ;
Li, Shengtai ;
Petzold, Linda ;
Serban, Radu .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 24 (03) :1076-1089
[22]   A modified collocation method for solving differential-algebraic equations [J].
Wang, FS .
APPLIED MATHEMATICS AND COMPUTATION, 2000, 116 (03) :257-278
[23]   Problem for differential-algebraic equations with a significant loads [J].
Assanova, A. T. ;
Kadirbayeva, Zh. M. ;
Medetbekova, R. A. ;
Mynbayeva, S. T. .
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2024, 113 (01) :46-59
[24]   A new procedure for solving differential-algebraic equations [J].
Drag, Pawel ;
Styczen, Krystyn .
2019 20TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2019, :450-454
[25]   On a Solvability to the Problem with Parameter for Differential-Algebraic Equations [J].
Assanova, A. T. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (02) :604-612
[26]   On a class of differential-algebraic equations with infinite delay [J].
Bisconti, Luca ;
Spadini, Marco .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2011, (81) :1-21
[27]   DISCONTINUITY PROPAGATION IN DELAY DIFFERENTIAL-ALGEBRAIC EQUATIONS [J].
Unger, Benjamin .
ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2018, 34 :582-601
[28]   Nonsmooth differential-algebraic equations in chemical engineering [J].
Stechlinski, Peter ;
Patrascu, Michael ;
Barton, Paul, I .
COMPUTERS & CHEMICAL ENGINEERING, 2018, 114 :52-68
[29]   Feedback and Impulse Behavior of Differential-Algebraic Equations [J].
Shcheglova, A. A. .
MATHEMATICAL NOTES, 2021, 110 (3-4) :592-608
[30]   Numerical solution of linear differential-algebraic equations [J].
Hosseini, MM .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 162 (01) :7-14