Sensitivity analysis of differential-algebraic equations and partial differential equations

被引:62
作者
Petzold, Linda [1 ]
Li, Shengtai
Cao, Yang
Serban, Radu
机构
[1] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] Virginia Tech, Dept Comp Sci, Blacksburg, VA 24061 USA
[4] Lawrence Livermore Natl Lab, Ctr Appl Sci Comp, Livermore, CA 94551 USA
基金
美国国家科学基金会;
关键词
sensitivity analysis; differential-algebraic equations; adjoint method;
D O I
10.1016/j.compchemeng.2006.05.015
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Sensitivity analysis generates essential information for model development, design optimization, parameter estimation, optimal control, model reduction and experimental design. In this paper we describe the forward and adjoint methods for sensitivity analysis, and outline some of our recent work on theory, algorithms and software for sensitivity analysis of differential-algebraic equation (DAE) and time-dependent partial differential equation (PDE) systems. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1553 / 1559
页数:7
相关论文
共 32 条
[1]  
ANDERSON WK, 1997, 35 AER SCI M EXH
[2]   Admitting the inadmissible: Adjoint formulation for incomplete cost functionals in aerodynamic optimization [J].
Arian, E ;
Salas, MD .
AIAA JOURNAL, 1999, 37 (01) :37-44
[3]  
Ascher U.M., 1998, COMPUTER METHODS ORD, V61
[4]   ADAPTIVE MESH REFINEMENT FOR HYPERBOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
BERGER, MJ ;
OLIGER, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 53 (03) :484-512
[5]  
BISCHOF C, 1996, ANLMCSP6261196
[6]  
Bischof C.H., 1992, Sci. Program., V1, P11, DOI [DOI 10.1155/1992/717832, 10.1155/1992/717832]
[7]   A PDE sensitivity equation method for optimal aerodynamic design [J].
Borggaard, J ;
Burns, J .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 136 (02) :366-384
[8]  
Brenan K.E., 1995, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations
[9]   USING KRYLOV METHODS IN THE SOLUTION OF LARGE-SCALE DIFFERENTIAL-ALGEBRAIC SYSTEMS [J].
BROWN, PN ;
HINDMARSH, AC ;
PETZOLD, LR .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (06) :1467-1488
[10]   Adjoint sensitivity analysis for differential-algebraic equations: algorithms and software [J].
Cao, Y ;
Li, ST ;
Petzold, L .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 149 (01) :171-191