Pushing the High-Energy Limit of Plasmonics

被引:53
作者
Bisio, Francesco [1 ]
Zaccaria, Remo Proietti [2 ]
Moroni, Riccardo [1 ]
Maidecchi, Giulia [3 ,4 ]
Alabastri, Alessandro [2 ]
Gonella, Grazia [5 ]
Giglia, Angelo [6 ]
Andolfi, Laura [6 ]
Nannarone, Stefano [6 ]
Mattera, Lorenzo [3 ,4 ]
Canepa, Maurizio [3 ,4 ]
机构
[1] CNR SPIN, I-16152 Genoa, Italy
[2] Ist Italiano Tecnol, I-16163 Genoa, Italy
[3] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy
[4] CNISM, Sede Consorziata Genova, I-16146 Genoa, Italy
[5] Temple Univ, Dept Chem, Philadelphia, PA 19122 USA
[6] CNR Ist Officina Mat, I-34149 Trieste, Italy
关键词
plasmonics; aluminum; ultraviolet; nanoparticle; self-organization; METAL NANOPARTICLES; ALUMINUM; OXIDATION; RESONANCE; AU; SPECTROSCOPY; METAMATERIALS; FABRICATION; MORPHOLOGY; SCATTERING;
D O I
10.1021/nn503035b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The localized surface plasmon resonance of metal nanoparticles allows confining the eletromagnetic field in nanosized volumes, creating high-field "hot spots", most useful for enhanced nonlinear optical spectroscopies. The commonly employed metals, Au and Ag, yield plasmon resonances only spanning the visible/near-infrared range. Stretching upward, the useful energy range of plasmonics requires exploiting different materials. Deep-ultraviolet plasmon resonances happen to be achievable with one of the cheapest and most abundant materials available: aluminum indeed holds the promise of a broadly tunable plasmonic response, theoretically extending far into the deep-ultraviolet. Complex nanofabrication and the unavoidable Al oxidation have so far prevented the achievement of this ultimate high-energy response. A nanofabrication technique producing purely metallic Al nanoparticles has at last allowed to overcome these limits, pushing the plasmon resonance to 6.8 eV photon energy (approximate to 180nm) and thus significantly broadening the spectral range of plasmonics' numerous applications.
引用
收藏
页码:9239 / 9247
页数:9
相关论文
共 54 条
[11]   Plasmon resonances of aluminum nanoparticles and nanorods [J].
Ekinci, Y. ;
Solak, H. H. ;
Loeffler, J. F. .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (08)
[12]   Equations for the Cabrera-Mott kinetics of oxidation for spherical nanoparticles [J].
Ermoline, Alexandre ;
Dreizin, Edward L. .
CHEMICAL PHYSICS LETTERS, 2011, 505 (1-3) :47-50
[13]   Modeling Light Trapping in Nanostructured Solar Cells [J].
Ferry, Vivian E. ;
Polman, Albert ;
Atwater, Harry A. .
ACS NANO, 2011, 5 (12) :10055-10064
[14]   DIRECT MEASUREMENTS OF THE SURFACE ENERGIES OF CRYSTALS [J].
GILMAN, JJ .
JOURNAL OF APPLIED PHYSICS, 1960, 31 (12) :2208-2218
[15]   Plasmonics beyond the diffraction limit [J].
Gramotnev, Dmitri K. ;
Bozhevolnyi, Sergey I. .
NATURE PHOTONICS, 2010, 4 (02) :83-91
[16]   Plasmons in Strongly Coupled Metallic Nanostructures [J].
Halas, Naomi J. ;
Lal, Surbhi ;
Chang, Wei-Shun ;
Link, Stephan ;
Nordlander, Peter .
CHEMICAL REVIEWS, 2011, 111 (06) :3913-3961
[17]   Fabrication, characterization and optical theory of aluminum nanometal nanoporous membrane thin film composites [J].
Hornyak, GL ;
Phani, KLN ;
Kunkel, DL ;
Menon, VP ;
Martin, CR .
NANOSTRUCTURED MATERIALS, 1995, 6 (5-8) :839-842
[18]   Deep-Ultraviolet Blue-Light Surface Plasmon Resonance of Al and Alcore/Al2O3shell in Spherical and Cylindrical Nanostructures [J].
Hu, Jinlian ;
Chen, Lu ;
Lian, Zichao ;
Cao, Min ;
Li, Haijin ;
Sun, Wenbin ;
Tong, Niuliu ;
Zeng, Haibo .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (29) :15584-15590
[19]   Magnetic metamaterials in the blue range using aluminum nanostructures [J].
Jeyaram, Yogesh ;
Jha, Shankar K. ;
Agio, Mario ;
Loeffler, Joerg F. ;
Ekinci, Yasin .
OPTICS LETTERS, 2010, 35 (10) :1656-1658
[20]   Deep-UV Surface-Enhanced Resonance Raman Scattering of Adenine on Aluminum Nanoparticle Arrays [J].
Jha, Shankar K. ;
Ahmed, Zeeshan ;
Agio, Mario ;
Ekinci, Yasin ;
Loeffler, Joerg F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (04) :1966-1969