Pushing the High-Energy Limit of Plasmonics

被引:53
作者
Bisio, Francesco [1 ]
Zaccaria, Remo Proietti [2 ]
Moroni, Riccardo [1 ]
Maidecchi, Giulia [3 ,4 ]
Alabastri, Alessandro [2 ]
Gonella, Grazia [5 ]
Giglia, Angelo [6 ]
Andolfi, Laura [6 ]
Nannarone, Stefano [6 ]
Mattera, Lorenzo [3 ,4 ]
Canepa, Maurizio [3 ,4 ]
机构
[1] CNR SPIN, I-16152 Genoa, Italy
[2] Ist Italiano Tecnol, I-16163 Genoa, Italy
[3] Univ Genoa, Dipartimento Fis, I-16146 Genoa, Italy
[4] CNISM, Sede Consorziata Genova, I-16146 Genoa, Italy
[5] Temple Univ, Dept Chem, Philadelphia, PA 19122 USA
[6] CNR Ist Officina Mat, I-34149 Trieste, Italy
关键词
plasmonics; aluminum; ultraviolet; nanoparticle; self-organization; METAL NANOPARTICLES; ALUMINUM; OXIDATION; RESONANCE; AU; SPECTROSCOPY; METAMATERIALS; FABRICATION; MORPHOLOGY; SCATTERING;
D O I
10.1021/nn503035b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The localized surface plasmon resonance of metal nanoparticles allows confining the eletromagnetic field in nanosized volumes, creating high-field "hot spots", most useful for enhanced nonlinear optical spectroscopies. The commonly employed metals, Au and Ag, yield plasmon resonances only spanning the visible/near-infrared range. Stretching upward, the useful energy range of plasmonics requires exploiting different materials. Deep-ultraviolet plasmon resonances happen to be achievable with one of the cheapest and most abundant materials available: aluminum indeed holds the promise of a broadly tunable plasmonic response, theoretically extending far into the deep-ultraviolet. Complex nanofabrication and the unavoidable Al oxidation have so far prevented the achievement of this ultimate high-energy response. A nanofabrication technique producing purely metallic Al nanoparticles has at last allowed to overcome these limits, pushing the plasmon resonance to 6.8 eV photon energy (approximate to 180nm) and thus significantly broadening the spectral range of plasmonics' numerous applications.
引用
收藏
页码:9239 / 9247
页数:9
相关论文
共 54 条
[1]   Design of Plasmonic Nanoparticles for Efficient Subwavelength Light Trapping in Thin-Film Solar Cells [J].
Akimov, Yuriy A. ;
Koh, Wee Shing .
PLASMONICS, 2011, 6 (01) :155-161
[2]   Flexible Tuning of Shape and Arrangement of Au Nanoparticles in 2-Dimensional Self-Organized Arrays: Morphology and Plasmonic Response [J].
Anghinolfi, L. ;
Moroni, R. ;
Mattera, L. ;
Canepa, M. ;
Bisio, F. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (29) :14036-14043
[3]   Biosensing with plasmonic nanosensors [J].
Anker, Jeffrey N. ;
Hall, W. Paige ;
Lyandres, Olga ;
Shah, Nilam C. ;
Zhao, Jing ;
Van Duyne, Richard P. .
NATURE MATERIALS, 2008, 7 (06) :442-453
[4]   OBSERVATION OF A LOW-BINDING-ENERGY PEAK IN THE 2P CORE-LEVEL PHOTOEMISSION FROM OXIDIZED AL(111) [J].
BERG, C ;
RAAEN, S ;
BORG, A ;
ANDERSEN, JN ;
LUNDGREN, E ;
NYHOLM, R .
PHYSICAL REVIEW B, 1993, 47 (19) :13063-13066
[5]   Search for the Ideal Plasmonic Nanoshell: The Effects of Surface Scattering and Alternatives to Gold and Silver [J].
Blaber, Martin G. ;
Arnold, Matthew D. ;
Ford, Michael J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (08) :3041-3045
[6]   THEORY OF THE OXIDATION OF METALS [J].
CABRERA, N ;
MOTT, NF .
REPORTS ON PROGRESS IN PHYSICS, 1948, 12 :163-184
[7]   Aluminum for Nonlinear Plasmonics: Resonance-Driven Polarized Luminescence of Al, Ag, and Au Nanoantennas [J].
Castro-Lopez, Marta ;
Brinks, Daan ;
Sapienza, Riccardo ;
van Hulst, Niek F. .
NANO LETTERS, 2011, 11 (11) :4674-4678
[8]   Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles [J].
Chan, George H. ;
Zhao, Jing ;
Schatz, George C. ;
Van Duyne, Richard P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (36) :13958-13963
[9]   A CMOS Image Sensor Integrated with Plasmonic Colour Filters [J].
Chen, Q. ;
Das, D. ;
Chitnis, D. ;
Walls, K. ;
Drysdale, T. D. ;
Collins, S. ;
Cumming, D. R. S. .
PLASMONICS, 2012, 7 (04) :695-699
[10]  
Edwards D.F., 1985, Handbook of optical constants of solids