Significant reduction of lattice thermal conductivity due to phonon confinement in graphene nanoribbons

被引:24
作者
Nissimagoudar, A. S. [1 ]
Sankeshwar, N. S. [1 ]
机构
[1] Karnatak Univ, Dept Phys, Dharwad 580003, Karnataka, India
来源
PHYSICAL REVIEW B | 2014年 / 89卷 / 23期
关键词
WALLED CARBON NANOTUBES; TRANSPORT; RIBBONS;
D O I
10.1103/PhysRevB.89.235422
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Lattice thermal conductivity, kappa(p), of suspended and supported graphene nanoribbons (GNRs) is studied over a wide temperature range, taking into account the dispersive nature of confined acoustic phonon modes. Employing a modified Callaway model, an expression for kappa(p) is developed, considering the explicit contributions from in-plane longitudinal, transverse, and torsional acoustic, and out-of-plane flexural acoustic phonon modes. Numerical calculations of kappa(p) (T) are presented assuming the confined acoustic phonons to be scattered by sample boundaries, impurities, and other phonons via both normal and umklapp processes. The effect of phonon confinement is to modify the phonon group velocities and the temperature dependence of kappa(p). In a suspended 5-nm-wide GNR at room temperature, a decrease in kappa(p) by similar to 70% is predicted. Our study brings out the relative importance of the contributing phonon modes and reveals the influence of flexural phonons on kappa(p) as a marked shoulder at low temperatures. The role of the various sample-dependent scattering mechanisms is examined. The substrate, in supported GNRs, is shown to curtail the phonon mean free path and suppress the low-temperature kappa(p). Our results are in good agreement with recent experimental data of Bae et al. [M. H. Bae, Z. Li, Z. Aksamija, P. N. Martin, F. Xiong, Z. Y. Ong, I. Knezevic, and E. Pop, Nat. Commun. 4, 1734 (2013)] for supported GNRs.
引用
收藏
页数:11
相关论文
共 47 条
[1]   Thermal transport in graphene nanoribbons supported on SiO2 [J].
Aksamija, Z. ;
Knezevic, I. .
PHYSICAL REVIEW B, 2012, 86 (16)
[2]   Lattice thermal conductivity of graphene nanoribbons: Anisotropy and edge roughness scattering [J].
Aksamija, Z. ;
Knezevic, I. .
APPLIED PHYSICS LETTERS, 2011, 98 (14)
[3]   Evolution of thermal properties from graphene to graphite [J].
Alofi, A. ;
Srivastava, G. P. .
APPLIED PHYSICS LETTERS, 2014, 104 (03)
[4]   Thermal conductivity of graphene and graphite [J].
Alofi, A. ;
Srivastava, G. P. .
PHYSICAL REVIEW B, 2013, 87 (11)
[5]   Ballistic to diffusive crossover of heat flow in graphene ribbons [J].
Bae, Myung-Ho ;
Li, Zuanyi ;
Aksamija, Zlatan ;
Martin, Pierre N. ;
Xiong, Feng ;
Ong, Zhun-Yong ;
Knezevic, Irena ;
Pop, Eric .
NATURE COMMUNICATIONS, 2013, 4
[6]   Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well [J].
Balandin, A ;
Wang, KL .
PHYSICAL REVIEW B, 1998, 58 (03) :1544-1549
[7]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[8]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[9]  
Bandari C., 1988, THERMAL CONDUCTION S
[10]   MODEL FOR LATTICE THERMAL CONDUCTIVITY AT LOW TEMPERATURES [J].
CALLAWAY, J .
PHYSICAL REVIEW, 1959, 113 (04) :1046-1051