Numerical simulation of transient cooling of a hot solid by an impinging free surface jet

被引:27
作者
Fujimoto, H [1 ]
Takuda, H
Hatta, N
Viskanta, R
机构
[1] Kyoto Univ, Grad Sch Energy Sci, Dept Energy Sci & Technol, Sakyo Ku, Kyoto 6068501, Japan
[2] Purdue Univ, Sch Mech Engn, W Lafayette, IN 47906 USA
关键词
D O I
10.1080/104077899274444
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper treats transient cooling of a hot solid by an impinging circular free surface liquid jet. The flow and thermal fields in the liquid as well as the temperature distributions in the hot solid have been predicted numerically. The Navier-Stokes equations for incompressible fluid flow in an axisymmetric coordinate system and the transient heat conduction equation for a solid Rave been solved by a finite difference method. The hydrodynamics of the liquid film and the heat transfer processes have been investigated to understand the physics of the phenomena.
引用
收藏
页码:767 / 780
页数:14
相关论文
共 20 条
  • [1] Numerical study of turbulent heat transfer in confined and unconfined impinging jets
    Behnia, M
    Parneix, S
    Shabany, Y
    Durbin, PA
    [J]. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 1999, 20 (01) : 1 - 9
  • [2] BURMEISTER LC, 1993, CONVECTIVE HEAT TRAN, pCH7
  • [3] HEAT TRANSFER IN A RADIAL LIQUID JET
    CHAUDHURY, ZH
    [J]. JOURNAL OF FLUID MECHANICS, 1964, 20 (03) : 501 - 511
  • [4] Numerical simulation of convective heat transfer to a radial free surface jet impinging on a hot solid
    Fujimoto, H
    Hatta, N
    Viskanta, R
    [J]. HEAT AND MASS TRANSFER, 1999, 35 (04) : 266 - 272
  • [5] HALL DE, 1996, P ASME HEAT TRANSFER, V332, P131
  • [6] INAMURA T, 1991, JAP SOC MECH ENG B, V57, P1332
  • [7] *IR STEEL MAK I JA, 1978, 29 IR STEEL MAK I JA, pCH2
  • [8] ISHITANI K, 1976, JAP SOC MECH ENG, V42, P1502
  • [9] CONVECTIVE HEAT-TRANSFER BY IMPINGEMENT OF CIRCULAR LIQUID JETS
    LIU, X
    LIENHARD, JH
    LOMBARA, JS
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1991, 113 (03): : 571 - 582
  • [10] SCHLICHTING H, 1968, BOUNDARY LAYER THEOR, pCH5