Influence of zinc dialkyldithiophosphate tribofilm formation on the tribological performance of self-mated diamond-like carbon contacts under boundary lubrication

被引:32
作者
Tasdemir, H. Abdullah [1 ]
Tokoroyama, Takayuki [1 ]
Kousaka, Hiroyuki [1 ]
Umehara, Noritsugu [1 ]
Mabuchi, Yutaka [2 ]
机构
[1] Nagoya Univ, Grad Sch Engn, Dept Mech Sci & Engn, Chikusa Ku, Nagoya, Aichi 4648603, Japan
[2] Nissan Motor Co Ltd, Tokyo, Japan
关键词
DLC; ZnDTP; Wear; Friction; Lubrication; OIL ADDITIVES; FRICTION PROPERTIES; DLC COATINGS; MECHANISMS; BEHAVIOR; DLC/DLC; ZNDTP; MODTC; ZDDP; TEMPERATURE;
D O I
10.1016/j.tsf.2014.05.004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Diamond-like carbon (DLC) coatings offer excellent mechanical and tribological properties that make them suitable protective coatings for various industrial applications. In recent years, several engine and power train components in passenger cars, which work under boundary lubricated conditions, have been coated with DLC coatings. Since conventional lubricants and lubricant additives are formulated for metal surfaces, there are still controversial questions concerning chemical reactivity between DLC surfaces and common lubricant additives owing to the chemical inertness of DLC coatings. In this work, we present the influence of zinc dialkyldithiophosphate (ZnDTP) anti-wear additives on the tribological performance of various self-mated DLC coatings under boundary lubrication conditions. The effects of hydrogen, doping elements, and surface morphology on the reactivity of DLC coatings to forma ZnDTP-derived tribofilm were investigated by atomic force microscopy, field emission scanning electron microscopy and X-ray photoelectron spectroscopy. The results confirmed that ZnDTP-derived pad-like or patchy tribofilm forms on the surfaces depending on the DLC coating. It is seen that hydrogen content and doping elements increase pad-like tribofilm formation. Doped DLC coatings are found to give better wear resistance than non-doped DLC coatings. Furthermore, the addition of ZnDTP additives to the base oil significantly improves the wear resistance of hydrogenated DLC, silicon-doped hydrogenated DLC, and chromium-doped hydrogenated DLC. Hydrogen-free tetrahedral amorphous DLC coatings provide the lowest friction coefficient both in PAO (poly-alpha-olefin) and PAO + ZnDTP oils. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:389 / 397
页数:9
相关论文
共 32 条
[1]   Role of oxygen and humidity on the tribo-chemical behaviour of non-hydrogenated diamond-like carbon coatings [J].
Abou Gharam, A. ;
Lukitsch, M. J. ;
Qi, Y. ;
Alpas, A. T. .
WEAR, 2011, 271 (9-10) :2157-2163
[2]   Friction of diamond-like carbon films in different atmospheres [J].
Andersson, J ;
Erck, RA ;
Erdemir, A .
WEAR, 2003, 254 (11) :1070-1075
[3]  
[Anonymous], 1995, Handbook of X-ray Photoelectron Spectroscopy. A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data
[4]   Boundary lubrication mechanisms of carbon coatings by MoDTC and ZDDP additives [J].
de Barros'Bouchet, MI ;
Martin, JM ;
Le-Mogne, T ;
Vacher, B .
TRIBOLOGY INTERNATIONAL, 2005, 38 (03) :257-264
[5]   Reactions of zinc-free anti-wear additives in DLC/DLC and steel/steel contacts [J].
Equey, Sebastien ;
Roos, Sigfried ;
Mueller, Ulrich ;
Hauert, Roland ;
Spencer, Nicholas D. ;
Crockett, Rowena .
TRIBOLOGY INTERNATIONAL, 2008, 41 (11) :1090-1096
[6]   Tribofilm formation from ZnDTP on diamond-like carbon [J].
Equey, Sebastien ;
Roos, Sigfried ;
Mueller, Ulrich ;
Hauert, Roland ;
Spencer, Nicholas D. ;
Crockett, Rowena .
WEAR, 2008, 264 (3-4) :316-321
[7]   Tribology of diamond-like carbon films: recent progress and future prospects [J].
Erdemir, Ali ;
Donnet, Christophe .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2006, 39 (18) :R311-R327
[8]  
Fontaine J., 2008, Tribology of Diamond-like Carbon Films: Fundamentals and Applications, P139, DOI [10.1007/978-0-387-49891-1_5, DOI 10.1007/978-0-387-49891-1_5]
[9]   Diamond-like carbon: state of the art [J].
Grill, A .
DIAMOND AND RELATED MATERIALS, 1999, 8 (2-5) :428-434
[10]   Influence of friction modifier and antiwear additives on the tribological performance of a non-hydrogenated DLC coating [J].
Hague, T. ;
Morina, A. ;
Neville, A. .
SURFACE & COATINGS TECHNOLOGY, 2010, 204 (24) :4001-4011