Existence and uniqueness of positive solutions of semilinear elliptic systems

被引:124
作者
Dalmasso, R [1 ]
机构
[1] Tour IRMA, Lab LMC IMAG, Equipe EDP, F-38041 Grenoble 9, France
关键词
elliptic system; positive solution; superlinear and sublinear; existence; uniqueness;
D O I
10.1016/S0362-546X(98)00221-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A study was conducted to answer the question of existence and uniqueness for positive solutions of the semilinear elliptic system with homogeneous Dirichlet data -Δu = g(v) in Ω, -Δv = f(u) in Ω, u = v = 0 on ∂Ω (equation 1.1), where Ω⊂Rn(n≥1) denotes a bounded domain of class C2,α, α∈(0,1] and f,g satisfying the given hypothesis. The study focused in the case where f is superlinear or sublinear at 0 and ∞ while g is sublinear or superlinear at 0 and ∞.
引用
收藏
页码:559 / 568
页数:10
相关论文
共 8 条
[1]   FIXED-POINT EQUATIONS AND NONLINEAR EIGENVALUE PROBLEMS IN ORDERED BANACH-SPACES [J].
AMANN, H .
SIAM REVIEW, 1976, 18 (04) :620-709
[2]   SUBLINEAR ELLIPTIC-EQUATIONS IN RN [J].
BREZIS, H ;
KAMIN, S .
MANUSCRIPTA MATHEMATICA, 1992, 74 (01) :87-106
[3]   UNIQUENESS THEOREMS FOR SOME 4TH-ORDER ELLIPTIC-EQUATIONS [J].
DALMASSO, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 123 (04) :1177-1183
[4]  
Dalmasso R, 1995, REV MAT IBEROAM, V11, P247
[5]  
Krasnoselskii M. A., 1964, Positive Solutions of Operator Equations
[6]  
Peletier L.A., 1992, Diff. Int. Eq, V5, P747
[7]   SYMMETRY PROPERTIES IN SYSTEMS OF SEMI-LINEAR ELLIPTIC-EQUATIONS [J].
TROY, WC .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1981, 42 (03) :400-413
[8]  
Trudinger NS, 1977, ELLIPTIC PARTIAL DIF, DOI DOI 10.1007/978-3-642-96379-7