Thiol oxidation in bacteria, mitochondria and chloroplasts: Common principles but three unrelated machineries?

被引:46
作者
Herrmann, Johannes M. [1 ]
Kauff, Frank [1 ]
Neuhaus, H. Ekkehard [1 ]
机构
[1] Univ Kaiserslautern, D-67663 Kaiserslautern, Germany
来源
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH | 2009年 / 1793卷 / 01期
关键词
Disulfide relay; DsbA-DsbB; Erv1; Intermembrane space; Oxidative folding; Periplasm; Thylakoids; DISULFIDE BOND FORMATION; CYTOCHROME-C-OXIDASE; INTERMEMBRANE SPACE; PROTEIN IMPORT; RELAY SYSTEM; CRYSTAL-STRUCTURE; REDOX REGULATION; MOLECULAR CHAPERONES; STRUCTURAL-ANALYSIS; SULFHYDRYL OXIDASE;
D O I
10.1016/j.bbamcr.2008.05.001
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The intermembrame space of mitochondria and the thylakoid lumen of chloroplasts are evolutionary descendents of the periplasmic space of bacteria. Presumably due to their common ancestry, the active oxidation of cysteinyl thiols is used in these three compartments in order to stabilize protein folding or to regulate protein function. In contrast, compartments of the eukaryotic cell which developed from the bacterial cytosol maintain cysteine residues largely reduced. Whereas the oxidizing machinery of bacteria is well characterized, that of mitochondria was only recently discovered and that of thylakoids still awaits to be identified. In mitochondria, protein oxidation is mediated by the sulfhydryl oxidase Erv1 which is highly conserved among eukaryotes. Erv1 oxidizes its substrate protein Mia40 which serves as an import receptor for proteins destined for the intermembrane space. This review summarizes the current knowledge on the mitochondrial disulfide relay system and compares its features to those of the periplasm and the thylakoid lumen. Although the sulfhydryl oxidases in the intermembrame space, Erv1, and the bacterial periplasm, DsbA-DsbB, share key structural features their primary sequence is not related and the evolutionary origin of Erv1 is unclear. On the basis of phylogenetic analyses of Erv1 sequences we propose that the mitochondrial oxidation machinery originated from a lateral gene transfer from flavobacteria-like prokaryotes early in eukaryotic evolution. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:71 / 77
页数:7
相关论文
共 75 条
[1]   Yeast Cox17 solution structure and copper(I) binding [J].
Abajian, C ;
Yatsunyk, LA ;
Ramirez, BE ;
Rosenzweig, AC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (51) :53584-53592
[2]   Erv1 mediates the Mia40-dependent protein import pathway and provides a functional link to the respiratory chain by shuttling electrons to cytochrome c [J].
Allen, S ;
Balabanidou, V ;
Sideris, DP ;
Lisowsky, T ;
Tokatlidis, K .
JOURNAL OF MOLECULAR BIOLOGY, 2005, 353 (05) :937-944
[3]   Juxtaposition of the two distal CX3C motifs via intrachain disulfide bonding is essential for the folding of Tim10 [J].
Allen, S ;
Lu, H ;
Thornton, D ;
Tokatlidis, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (40) :38505-38513
[4]   Folding studies of Cox17 reveal an important interplay of cysteine oxidation and copper binding [J].
Arnesano, F ;
Balatri, E ;
Banci, L ;
Bertini, I ;
Winge, DR .
STRUCTURE, 2005, 13 (05) :713-722
[5]   Oxidative protein folding is driven by the electron transport system [J].
Bader, M ;
Muse, W ;
Ballou, DP ;
Gassner, C ;
Bardwell, JCA .
CELL, 1999, 98 (02) :217-227
[6]   Solution structure of Sco1: A thioredoxin-like protein involved in cytochrome c oxidase assembly [J].
Balatri, E ;
Banci, L ;
Bertini, I ;
Cantini, F ;
Ciofi-Baffoni, S .
STRUCTURE, 2003, 11 (11) :1431-1443
[7]   Solution structure of Cox11, a novel type of β-immunoglobulin-like fold involved in CuB site formation of cytochrome C oxidase [J].
Banci, L ;
Bertini, I ;
Cantini, F ;
Ciofi-Baffoni, S ;
Gonnelli, L ;
Mangani, S .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (33) :34833-34839
[8]   IDENTIFICATION OF A PROTEIN REQUIRED FOR DISULFIDE BOND FORMATION INVIVO [J].
BARDWELL, JCA ;
MCGOVERN, K ;
BECKWITH, J .
CELL, 1991, 67 (03) :581-589
[9]   In vivo and in vitro function of the Escherichia coli periplasmic cysteine oxidoreductase DsbG [J].
Bessette, PH ;
Cotto, JJ ;
Gilbert, HF ;
Georgiou, G .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (12) :7784-7792
[10]   The disulfide relay system of mitochondria is connected to the respiratory chain [J].
Bihlmaier, Karl ;
Mesecke, Nikola ;
Terziyska, Nadia ;
Bien, Melanie ;
Hell, Kai ;
Herrmann, Johannes M. .
JOURNAL OF CELL BIOLOGY, 2007, 179 (03) :389-395