The Almon two parameter estimator for the distributed lag models

被引:17
作者
Ozbay, Nimet [1 ]
Kaciranlar, Selahattin [1 ]
机构
[1] Cukurova Univ, Fac Sci & Letters, Dept Stat, TR-01330 Adana, Turkey
关键词
Almon estimator; Almon Liu estimator; Almon ridge estimator; Almon two parameter estimator; finite distributed lag model; multicollinearity; REGRESSION;
D O I
10.1080/00949655.2016.1229317
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The two parameter estimator proposed by ozkale and Kacranlar [The restricted and unrestricted two parameter estimators. Comm Statist Theory Methods. 2007;36(15):2707-2725] is a general estimator which includes the ordinary least squares, the ridge and the Liu estimators as special cases. In the present paper we introduce Almon two parameter estimator based on the two parameter estimation procedure to deal with the problem of multicollinearity for the distiributed lag models. This estimator outperforms the Almon estimator according to the matrix mean square error criterion. Moreover, a numerical example and a Monte Carlo simulation experiment are presented by using different estimators of the biasing parameters.
引用
收藏
页码:834 / 843
页数:10
相关论文
共 22 条
[1]   THE DISTRIBUTED LAG BETWEEN CAPITAL APPROPRIATIONS AND EXPENDITURES [J].
ALMON, S .
ECONOMETRICA, 1965, 33 (01) :178-196
[2]  
CHANDA AK, 1984, COMMUN STAT-THEOR M, V13, P217
[3]   INCOME IN THEORY AND INCOME TAXATION IN PRACTICE [J].
Fisher, Irving .
ECONOMETRICA, 1937, 5 (01) :1-55
[4]   SOME PROPERTIES OF ALMON LAG TECHNIQUE WHEN ONE SEARCHES FOR DEGREE OF POLYNOMIAL AND LAG [J].
FROST, PA .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1975, 70 (351) :606-612
[5]  
Gruber M., 1998, Improving Efficiency by Shrinkage: The James-Stein and Ridge Regression Estimators
[6]  
Gujarati D.N., 1999, BASIC ECONOMETRICS, V3rd
[7]   Comparisons of the alternative biased estimators for the distributed lag models [J].
Guler, Huseyin ;
Gultay, Berrin ;
Kaciranlar, Selahattin .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (04) :3306-3318
[8]  
Gültay B, 2015, HACET J MATH STAT, V44, P1215
[9]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&
[10]  
KACIRANLAR S, 2010, J STAT RES, V9, P1