Hardy inequality on time scales and its application to half-linear dynamic equations

被引:97
作者
Rehák, Pavel [1 ]
机构
[1] Acad Sci Czech Republ, Math Inst, Brno 61662, Czech Republic
关键词
D O I
10.1155/JIA.2005.495
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A time-scale version of the Hardy inequality is presented, which unifies and extends well-known Hardy inequalities in the continuous and in the discrete setting. An application in the oscillation theory of half-linear dynamic equations is given.
引用
收藏
页码:495 / 507
页数:13
相关论文
共 19 条
[1]  
Agarwal RP, 2003, NONLINEAR ANALYSIS AND APPLICATIONS : TO V. LAKSHMIKANTHAM ON HIS 80TH BIRTHDAY, VOLS.1 AND 2, P1
[2]  
AGARWAL RP, 2003, NONLINEAR ANAL APPL, V2, P1
[3]   Oscillation of second order nonlinear dynamic equations on time scales [J].
Bohner, M ;
Saker, SH .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2004, 34 (04) :1239-1254
[4]  
Bohner M., 2001, Dynamic Equations on Time Scales: AnIntroduction With Applications, DOI DOI 10.1007/978-1-4612-0201-1
[5]  
Bohner M., 2003, Advances in Dynamic Equations on Time Scales: An Introduction with Applications, DOI DOI 10.1007/978-0-8176-8230-9
[6]  
CHENG SS, 1993, TAMKANG J MATH, V24, P469
[7]   Nonoscillation criteria for half-linear second-order difference equations [J].
Dosly, O ;
Rehák, P .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (3-5) :453-464
[8]  
DOSLY O, 1998, HIROSHIMA MATH J, V28, P507
[9]  
Hardy GH., 1988, Inequalities
[10]  
Hilger S., 1988, Ph.D. Thesis