This paper studies the existence of Holder continuity of the generalized synchronization (GS) manifold. When the modified response system has an asymptotically stable equilibrium, periodic or quasi-periodic orbit, and chaotic attractor, GS is classified into four types accordingly. The first three types of GS are considered, and based on the Schauder fixed point theorem, sufficient conditions for Holder continuous GS in the coupled non-autonomous systems are derived and theoretically proved. (C) 2009 Elsevier Ltd. All rights reserved.
机构:
Chongqing Univ Technol, Inst Math & Stat, Chongqing 400054, Peoples R ChinaChongqing Univ Technol, Inst Math & Stat, Chongqing 400054, Peoples R China
Ye, Zhiyong
Deng, Cunbing
论文数: 0引用数: 0
h-index: 0
机构:
Chongqing Univ Technol, Inst Math & Stat, Chongqing 400054, Peoples R ChinaChongqing Univ Technol, Inst Math & Stat, Chongqing 400054, Peoples R China
机构:
Univ Reggio Calabria, Dipartimento Ingn Elettr & Matemat Appl, I-89100 Reggio Calabria, ItalyUniv Reggio Calabria, Dipartimento Ingn Elettr & Matemat Appl, I-89100 Reggio Calabria, Italy
Fattorusso, L
Idone, G
论文数: 0引用数: 0
h-index: 0
机构:
Univ Reggio Calabria, Dipartimento Ingn Elettr & Matemat Appl, I-89100 Reggio Calabria, ItalyUniv Reggio Calabria, Dipartimento Ingn Elettr & Matemat Appl, I-89100 Reggio Calabria, Italy
Idone, G
PROCEEDINGS OF THE EIGHTH INTERNATIONAL COLLOQUIUM ON DIFFERENTIAL EQUATIONS,
1998,
: 161
-
167