Hardy-Rellich inequalities with boundary remainder terms and applications

被引:24
作者
Berchio, Elvise [1 ]
Cassani, Daniele [1 ,2 ]
Gazzola, Filippo [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, I-20133 Milan, Italy
[2] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
关键词
SUPERCRITICAL BIHARMONIC-EQUATIONS; 4TH-ORDER ELLIPTIC PROBLEM; POSITIVE SOLUTIONS; CONSTANTS; EIGENVALUE; OPERATOR;
D O I
10.1007/s00229-009-0328-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a family of Hardy-Rellich inequalities with optimal constants and additional boundary terms. These inequalities are used to study the behavior of extremal solutions to biharmonic Gelfand-type equations under Steklov boundary conditions.
引用
收藏
页码:427 / 458
页数:32
相关论文
共 46 条
[1]   Optimal Hardy-Rellich inequalities, maximum principle and related eigenvalue problem [J].
Adimurthi ;
Grossi, Massimo ;
Santra, Sanjiban .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 240 (01) :36-83
[2]  
[Anonymous], 1997, Rev. Mat. Univ. Complut. Madrid
[3]  
[Anonymous], 1980, Commun. Partial Differ. Equ
[4]  
[Anonymous], 1998, Ann Scuola Norm Sup Pisa Cl Sci
[5]  
[Anonymous], 2002, Modeling MEMS and NEMS
[6]   A semilinear fourth order elliptic problem with exponential nonlinearity [J].
Arioli, G ;
Gazzola, F ;
Grunau, HC ;
Mitidieri, E .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 36 (04) :1226-1258
[7]   Entire solutions for a semilinear fourth order elliptic problem with exponential nonlinearity [J].
Arioli, Gianni ;
Gazzola, Filippo ;
Grunau, Hans-Christoph .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 230 (02) :743-770
[8]  
B?nilan P., 1995, ANN SCUOLA NORM-SCI, V22, P241
[9]   Best constants for higher-order Rellich inequalities in Lp (Ω) [J].
Barbatis, G. .
MATHEMATISCHE ZEITSCHRIFT, 2007, 255 (04) :877-896
[10]   On a class of Rellich inequalities [J].
Barbatis, G ;
Tertikas, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 194 (01) :156-172