Yield strength prediction of high-entropy alloys using machine learning

被引:89
|
作者
Bhandari, Uttam [1 ]
Rafi, Md Rumman [1 ]
Zhang, Congyan [1 ]
Yang, Shizhong [1 ]
机构
[1] Southern Univ & A&M Coll, Dept Comp Sci, Baton Rouge, LA 70813 USA
来源
MATERIALS TODAY COMMUNICATIONS | 2021年 / 26卷
关键词
High entropy alloys; Random forest model; Yield strength prediction; MoNbTaTiW; HfMoNbTaTiZr; MECHANICAL-PROPERTIES; PHASE PREDICTION; MICROSTRUCTURE; DESIGN; SELECTION; ALUMINUM;
D O I
10.1016/j.mtcomm.2020.101871
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Yield strength at high temperature is an important parameter in the design and application of high entropy alloys (HEAs). However, the experimental measurement of yield strength at high temperature is quite costly, complicated, and time-consuming. Therefore, it is essential to identify and apply a robust method for the accurate prediction of yield strength at high temperature from the available experimental and simulation data. In this study, for the first time, a machine learning (ML) method based on the regression technique of random forest (RF) regressor is used to predict the yield strength of HEAs at the desired temperature. The yield strengths of MoNbTaTiW and HfMoNbTaTiZr at 800 degrees C and 1200 degrees C, are predicted using the RF regressor model. We find that the results are consistent with the experimental reports, showing that the RF regressor model predicts the yield strength of HEAs at the desired temperatures with high accuracy.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Machine learning-based prediction of phases in high-entropy alloys
    Machaka, Ronald
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 188
  • [2] A yield strength prediction framework for refractory high-entropy alloys based on machine learning
    Ding, Shujian
    Wang, Weili
    Zhang, Yifan
    Ren, Wei
    Weng, Xiang
    Chen, Jian
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2024, 125
  • [3] The intrinsic strength prediction by machine learning for refractory high entropy alloys
    Yan, Yong-Gang
    Wang, Kun
    TUNGSTEN, 2023, 5 (04) : 531 - 538
  • [4] Machine Learning-Based Prediction of Complex Combination Phases in High-Entropy Alloys
    Thampiriyanon, Jirapracha
    Khumkoa, Sakhob
    METALS, 2025, 15 (03)
  • [5] Prediction of the Composition and Hardness of High-Entropy Alloys by Machine Learning
    Chang, Yao-Jen
    Jui, Chia-Yung
    Lee, Wen-Jay
    Yeh, An-Chou
    JOM, 2019, 71 (10) : 3433 - 3442
  • [6] Machine-learning phase prediction of high-entropy alloys
    Huang, Wenjiang
    Martin, Pedro
    Zhuang, Houlong L.
    ACTA MATERIALIA, 2019, 169 : 225 - 236
  • [7] Machine learning for high-entropy alloys: Progress, challenges and opportunities
    Liu, Xianglin
    Zhang, Jiaxin
    Pei, Zongrui
    PROGRESS IN MATERIALS SCIENCE, 2023, 131
  • [8] Machine learning guided prediction of dynamic energy release in high-entropy alloys
    Zhao, Fengyuan
    Zhang, Zhouran
    Ye, Yicong
    Li, Yahao
    Li, Shun
    Tang, Yu
    Zhu, Li'an
    Bai, Shuxin
    MATERIALS & DESIGN, 2024, 246
  • [9] Phase Prediction of High-Entropy Alloys by Integrating Criterion and Machine Learning Recommendation Method
    Hou, Shuai
    Li, Yujiao
    Bai, Meijuan
    Sun, Mengyue
    Liu, Weiwei
    Wang, Chao
    Tetik, Halil
    Lin, Dong
    MATERIALS, 2022, 15 (09)
  • [10] Machine Learning-Based Strength Prediction for Refractory High-Entropy Alloys of the Al-Cr-Nb-Ti-V-Zr System
    Klimenko, Denis
    Stepanov, Nikita
    Li, Jia
    Fang, Qihong
    Zherebtsov, Sergey
    MATERIALS, 2021, 14 (23)