ON THE ABAQUS FEA MODEL OF FINITE VISCOELASTICITY

被引:18
作者
Ciambella, J. [1 ]
Destrade, M. [2 ]
Ogden, R. W. [3 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Ingn Strutturale & Geotecn, I-00184 Rome, Italy
[2] Univ Coll Dublin, Sch Elect Engn & Mech Engn, Dublin 4, Ireland
[3] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
来源
RUBBER CHEMISTRY AND TECHNOLOGY | 2009年 / 82卷 / 02期
关键词
D O I
10.5254/1.3548243
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Predictions of the QLV (Quasi-Linear Viscoelastic) constitutive law are compared with those of the ABAQUS viscoelastic model for two simple motions in order to highlight, in particular, their very different dissipation rates and certain shortcomings of the ABAQUS model.
引用
收藏
页码:184 / 193
页数:10
相关论文
共 5 条
[1]   Nonlinear constitutive laws in viscoelasticity [J].
Drapaca, C. S. ;
Sivaloganathan, S. ;
Tenti, G. .
MATHEMATICS AND MECHANICS OF SOLIDS, 2007, 12 (05) :475-501
[2]   A single integral finite strain viscoelastic model of ligaments and tendons [J].
Johnson, GA ;
Livesay, GA ;
Woo, SLY ;
Rajagopal, KR .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 1996, 118 (02) :221-226
[3]   A NON-LINEAR INTEGRAL REPRESENTATION FOR VISCOELASTIC BEHAVIOUR [J].
PIPKIN, AC ;
ROGERS, TG .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1968, 16 (01) :59-&
[4]   A quasi-correspondence principle for Quasi-Linear viscoelastic solids [J].
Rajagopal, K. R. ;
Wineman, A. S. .
MECHANICS OF TIME-DEPENDENT MATERIALS, 2008, 12 (01) :1-14
[5]  
Wineman A. S., 1972, International Journal of Solids and Structures, V8, P775, DOI 10.1016/0020-7683(72)90042-X