Stable non-Gaussian noise parameter modulation in digital communication

被引:29
作者
Cek, M. E. [1 ]
Savaci, F. A. [1 ]
机构
[1] Izmir Inst Technol, Dept Elect & Elect Engn, TR-35430 Izmir, Turkey
关键词
CIRCUITS;
D O I
10.1049/el.2009.2280
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The parameter of the stable non-Gaussian noise sequence is modulated by the binary message sequence to achieve a secure communication system. The characteristic exponent 'alpha' of a stable non-Gaussian noise sequence carries the binary information. The receiver of the proposed random communication system demodulates the received signal by estimating the parameters of the transmitted noise sequence to recover the binary message sequence.
引用
收藏
页码:1256 / 1257
页数:2
相关论文
共 12 条
  • [1] Chaos communications - Principles, schemes, and system analysis
    Abel, A
    Schwarz, W
    [J]. PROCEEDINGS OF THE IEEE, 2002, 90 (05) : 691 - 710
  • [2] Basore B.L., 1952, Noise-like signals and their detection by correlation
  • [3] SYNCHRONIZATION OF LORENZ-BASED CHAOTIC CIRCUITS WITH APPLICATIONS TO COMMUNICATIONS
    CUOMO, KM
    OPPENHEIM, AV
    STROGATZ, SH
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1993, 40 (10): : 626 - 633
  • [4] Janicki A., 1994, Simulation and Chaotic Behavior of ?-Stable Stochastic Processes
  • [5] Generalization of waveform communications:: The fourier analyzer approach
    Kolumbán, G
    Lau, FCM
    Tse, CK
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2005, 24 (05) : 451 - 474
  • [6] Density parameter estimation of skewed α-stable distributions
    Kuruoglu, EE
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2001, 49 (10) : 2192 - 2201
  • [7] Lau F.C. M. Tse., 2003, SIG COM TEC, DOI 10.1007/978-3-662-05183-2
  • [8] Samorodnitsky G., 1994, Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance
  • [9] Steady-state analysis of nonlinearly coupled Chua's circuits with periodic input
    Savaci, FA
    Yalçin, ME
    Güzelis, C
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (11): : 3395 - 3407
  • [10] Optimal detection of differential chaos shift keying
    Schimming, T
    Hasler, M
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 2000, 47 (12): : 1712 - 1719