Optical limiting properties of hydrophobic poly(etherimide) membranes embedded with isolated and aggregated gold nanostructures

被引:8
作者
D'Britto, V. [1 ]
Sandeep, C. S. Suchand [2 ]
Philip, R. [2 ]
Prasad, B. L. V. [1 ]
机构
[1] Natl Chem Lab, Mat Chem Div, Pune 411008, Maharashtra, India
[2] Raman Res Inst, Bangalore 560080, Karnataka, India
关键词
Optical limiting; Nonlinear optical properties; Gold nanoparticles; Phase transfer; Nanoparticle aggregation; Polymer nanocomposites; IN-SITU SYNTHESIS; METAL NANOPARTICLES; POLYMER; FILMS; NONLINEARITIES; SPECTROSCOPY;
D O I
10.1016/j.colsurfa.2009.10.002
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A simple method to incorporate spherical or aggregated nanostructures of gold into hydrophobic poly(etherimide) membranes is demonstrated and their comparative nonlinear optical properties are investigated. When excited at 532 nm using laser pulses of 7 ns duration, a reduced transmission behaviour in both the cases, viz., polymers embedded with isolated nanoparticles and their aggregates is observed. This fits to a three-photon type nonlinear absorption process and is attributed to excited state absorption occurring in the nanostructures. Interestingly, the nonlinearity is more prominent in the aggregated nanostructures compared to the spherical nanostructures. These materials are potential candidates for optical limiting applications. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:79 / 83
页数:5
相关论文
共 21 条
[1]  
[Anonymous], The XRD patterns, were indexed with reference to the crystal structures from the PCPDFWIN: Ag (#04-0784)
[2]   Enhancement of third-order nonlinear optical susceptibilities in silica-capped Au nanoparticle films with very high concentrations [J].
Hamanaka, Y ;
Fukuta, K ;
Nakamura, A ;
Liz-Marzán, LM ;
Mulvaney, P .
APPLIED PHYSICS LETTERS, 2004, 84 (24) :4938-4940
[3]   Silver nanoparticle impregnated polycarbonate substrates for surface enhanced Raman spectroscopy [J].
Hasell, T. ;
Lagonigro, L. ;
Peacock, A. C. ;
Yoda, S. ;
Brown, P. D. ;
Sazio, P. J. A. ;
Howdle, S. M. .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (08) :1265-1271
[4]   The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment [J].
Kelly, KL ;
Coronado, E ;
Zhao, LL ;
Schatz, GC .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (03) :668-677
[5]  
Kreibig U., 1995, Optical properties of metal clusters, V25
[6]   Optical properties and ultrafast dynamics of metallic nanocrystals [J].
Link, S ;
Ei-Sayed, MA .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2003, 54 :331-366
[7]   Tailoring surface plasmons through the morphology and assembly of metal nanoparticles [J].
Liz-Marzán, LM .
LANGMUIR, 2006, 22 (01) :32-41
[8]   Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles [J].
Meng, Xiangeng ;
Fujita, Koji ;
Zong, Yanhua ;
Murai, Shunsuke ;
Tanaka, Katsuhisa .
APPLIED PHYSICS LETTERS, 2008, 92 (20)
[9]   Surface plasmon spectroscopy of nanosized metal particles [J].
Mulvaney, P .
LANGMUIR, 1996, 12 (03) :788-800
[10]   Nonlinear optical properties of molecularly bridged gold nanoparticle arrays [J].
Novak, JP ;
Brousseau, LC ;
Vance, FW ;
Johnson, RC ;
Lemon, BI ;
Hupp, JT ;
Feldheim, DL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (48) :12029-12030