Solid electrochemical energy storage for aqueous redox flow batteries: The case of copper hexacyanoferrate

被引:31
作者
Zanzola, Elena [1 ]
Gentil, Solene [1 ]
Gschwend, Gregoire [1 ]
Reynard, Danick [1 ]
Smirnov, Evgeny [1 ]
Dennison, C. R. [1 ]
Girault, Hubert H. [1 ]
Peljo, Pekka [1 ,2 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Electrochim Phys & Analyt, Rue Ind 17,Case Postale 440, CH-1951 Sion, Switzerland
[2] Aalto Univ, Res Grp Phys Electrochem & Electrochem Phys, Dept Chem & Mat Sci, Kemistintie 1,POB 16100, Aalto 00076, Finland
基金
芬兰科学院; 瑞士国家科学基金会;
关键词
Aqueous organic redox flow batteries; Solid energy storage material; Redox mediator; Prussian blue analogue; PRUSSIAN BLUE; ELECTRODE MATERIALS; OXYGEN REDUCTION; CARBON; SODIUM; IRON; CHEMISTRY; VANADIUM; NICKEL;
D O I
10.1016/j.electacta.2019.134704
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
All redox flow batteries suffer from low energy storage density in comparison with conventional Li-ion batteries. However, this issue can be mitigated by utilization of solid energy storage materials to enhance the energy storage capacity. In this paper we demonstrate the utilization of copper hexacyanoferrate (CuHCF) Prussian blue analogue for this purpose, coupled with N,N,N-2,2,6,6-heptamethylpiperidinyl oxy-4-ammonium chloride (TEMPTMA) as a soluble redox mediator to target the redox transitions of the solid material. In this case, indirect charging and discharging of CuHCF suspended in the electrolyte by electrochemically oxidized/reduced TEMPTMA was observed by chronoamperometry. Secondly, electrochemistry of different CuHCF composites with carbon black and multi-walled carbon nanotubes were investigated, highlighting that the high conductivity of the solid energy storage materials is crucial to access the maximal charge storage capacity. Finally, a CuHCF-TEMPTMA/Zn aqueous redox flow battery achieved stable cycling performances with high coulombic efficiency of 95% and volumetric capacity of 350 C mL(-1). (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 58 条
[1]   Renewable hydrogen generation from a dual-circuit redox flow battery [J].
Amstutz, Veronique ;
Toghill, Kathryn E. ;
Powlesland, Francis ;
Vrubel, Heron ;
Comninellis, Christos ;
Hu, Xile ;
Girault, Hubert H. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (07) :2350-2358
[2]  
[Anonymous], 2004, Analytical and Physical Electrochemistry
[3]   A Neutral pH Aqueous Organic-Organometallic Redox Flow Battery with Extremely High Capacity Retention [J].
Beh, Eugene S. ;
De Porcellinis, Diana ;
Gracia, Rebecca L. ;
Xia, Kay T. ;
Gordon, Roy G. ;
Aziz, Michael J. .
ACS ENERGY LETTERS, 2017, 2 (03) :639-644
[4]   Kubo-Greenwood electrical conductivity formulation and implementation for projector augmented wave datasets [J].
Calderin, L. ;
Karasiev, V. V. ;
Trickey, S. B. .
COMPUTER PHYSICS COMMUNICATIONS, 2017, 221 :118-142
[5]   A Stable and High-Capacity Redox Targeting-Based Electrolyte for Aqueous Flow Batteries [J].
Chen, Yan ;
Zhou, Mingyue ;
Xia, Yuanhua ;
Wang, Xun ;
Liu, Yang ;
Yao, Yuan ;
Zhang, Hang ;
Li, Yang ;
Lu, Songtao ;
Qin, Wei ;
Wu, Xiaohong ;
Wang, Qing .
JOULE, 2019, 3 (09) :2255-2267
[6]  
COMSOL, 1D IS NICK MET HYDR
[7]   Semi-Solid Lithium Rechargeable Flow Battery [J].
Duduta, Mihai ;
Ho, Bryan ;
Wood, Vanessa C. ;
Limthongkul, Pimpa ;
Brunini, Victor E. ;
Carter, W. Craig ;
Chiang, Yet-Ming .
ADVANCED ENERGY MATERIALS, 2011, 1 (04) :511-516
[8]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[9]   COPPER HEXACYANOFERRATE-MODIFIED GLASSY-CARBON - A NOVEL TYPE OF POTASSIUM-SELECTIVE ELECTRODE [J].
ENGEL, D ;
GRABNER, EW .
BERICHTE DER BUNSEN-GESELLSCHAFT-PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 1985, 89 (09) :982-986
[10]   Preparation of graphene/nickel-iron hexacyanoferrate coordination polymer nanocomposite for electrochemical energy storage [J].
Ghasemi, Shahram ;
Hosseini, Sayed Reza ;
Asen, Parvin .
ELECTROCHIMICA ACTA, 2015, 160 :337-346