Soliton dynamics in quadratic nonlinear media with two-dimensional Pythagorean aperiodic lattices

被引:8
作者
Bagci, Mahmut [1 ]
机构
[1] Yeditepe Univ, Sch Appl Sci, TR-34755 Istanbul, Turkey
关键词
SCHRODINGER-EQUATION; GRAPHENE; DELOCALIZATION; LOCALIZATION; TRANSITION; STATES; WAVES;
D O I
10.1364/JOSAB.416299
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The dynamics of two-dimensional Pythagorean lattice solitons are explored in quadratic nonlinear media. The study is focused on variation of sub-lattice depths and the strength of quadratic optical effects that specify characteristics of the considered model. The numerical existence of periodic and aperiodic lattice solitons is demonstrated, and the stability domain of solitons is determined for all parameters in the model. It is shown that, although the existence domain of periodic and aperiodic lattice solitons is identical, the stability region of periodic lattice solitons is narrower than that of aperiodic lattice solitons. It is manifested that stable solitons can exist in both periodic and aperiodic lattices, and decay of unstable solitons can be arrested by increasing the potential depth and decreasing the propagation constant. (C) 2021 Optical Society of America
引用
收藏
页码:1276 / 1282
页数:7
相关论文
共 43 条
[1]   Wave collapse in a class of nonlocal nonlinear Schrodinger equations [J].
Ablowitz, M ;
Bakirtas, I ;
Ilan, B .
PHYSICA D-NONLINEAR PHENOMENA, 2005, 207 (3-4) :230-253
[2]   Solitons and spectral renormalization methods in nonlinear optics [J].
Ablowitz, M. J. ;
Horikis, T. P. .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2009, 173 :147-166
[3]  
Ablowitz MJ, 2006, PHYS REV E, V74, DOI 10.1103/PhysRevE.74.035601
[4]   Vortex and dipole solitons in complex two-dimensional nonlinear lattices [J].
Ablowitz, Mark J. ;
Antar, Nalan ;
Bakirtas, Ilkay ;
Ilan, Boaz .
PHYSICAL REVIEW A, 2012, 86 (03)
[5]   Band-gap boundaries and fundamental solitons in complex two-dimensional nonlinear lattices [J].
Ablowitz, Mark J. ;
Antar, Nalan ;
Bakirtas, Ilkay ;
Ilan, Boaz .
PHYSICAL REVIEW A, 2010, 81 (03)
[6]   Spectral renormalization method for computing self-localized solutions to nonlinear systems [J].
Ablowitz, MJ ;
Musslimani, ZH .
OPTICS LETTERS, 2005, 30 (16) :2140-2142
[7]   Nonlinear Schrodinger equations with mean terms in nonresonant multidimensional quadratic materials [J].
Ablowitz, MJ ;
Biondini, G ;
Blair, S .
PHYSICAL REVIEW E, 2001, 63 (04)
[8]   Localized multi-dimensional optical pulses in non-resonant quadratic materials [J].
Ablowitz, MJ ;
Biondini, G ;
Blair, S .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2001, 56 (06) :511-519
[9]   Multi-dimensional pulse propagation in non-resonant χ(2) materials [J].
Ablowitz, MJ ;
Biondini, G ;
Blair, S .
PHYSICS LETTERS A, 1997, 236 (5-6) :520-524
[10]   Pseudospectral Renormalization Method for Solitons in Quasicrystal Lattice with the Cubic-Quintic Nonlinearity [J].
Antar, Nalan .
JOURNAL OF APPLIED MATHEMATICS, 2014,