Exploratory factor analysis with structured residuals for brain network data

被引:12
作者
Van Kesteren, Erik-Jan [1 ]
Kievit, Rogier A. [2 ]
机构
[1] Univ Utrecht, Dept Methodol & Stat, Utrecht, Netherlands
[2] Univ Cambridge, MRC Cognit & Brain Sci Unit, Cambridge, England
基金
英国医学研究理事会; 英国惠康基金; 欧盟地平线“2020”;
关键词
Dimension reduction; Exploratory Factor analysis; Structural covariance; Functional connectivity; Symmetry; Structural equation model; WHITE-MATTER MICROSTRUCTURE; LIFE-SPAN; INDIVIDUAL-DIFFERENCES; CEREBRAL-CORTEX; COVARIANCE; CONNECTIVITY; SELECTION; CHILDREN; VOLUMES; MODEL;
D O I
10.1162/netn_a_00162
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Dimension reduction is widely used and often necessary to make network analyses and their interpretation tractable by reducing high-dimensional data to a small number of underlying variables. Techniques such as exploratory factor analysis (EFA) are used by neuroscientists to reduce measurements from a large number of brain regions to a tractable number of factors. However, dimension reduction often ignores relevant a priori knowledge about the structure of the data. For example, it is well established that the brain is highly symmetric. In this paper, we (a) show the adverse consequences of ignoring a priori structure in factor analysis, (b) propose a technique to accommodate structure in EFA by using structured residuals (EFAST), and (c) apply this technique to three large and varied brain-imaging network datasets, demonstrating the superior fit and interpretability of our approach. We provide an R software package to enable researchers to apply EFAST to other suitable datasets.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 73 条
[1]   Imaging structural co-variance between human brain regions [J].
Alexander-Bloch, Aaron ;
Giedd, Jay N. ;
Bullmore, Edward T. .
NATURE REVIEWS NEUROSCIENCE, 2013, 14 (05) :322-336
[2]   Exploratory Structural Equation Modeling [J].
Asparouhov, Tihomir ;
Muthen, Bengt .
STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2009, 16 (03) :397-438
[3]   Random effects structure for confirmatory hypothesis testing: Keep it maximal [J].
Barr, Dale J. ;
Levy, Roger ;
Scheepers, Christoph ;
Tily, Harry J. .
JOURNAL OF MEMORY AND LANGUAGE, 2013, 68 (03) :255-278
[4]   Latent-Variable Modeling of Brain Gray-Matter Volume and Psychopathy in Incarcerated Offenders [J].
Baskin-Sommers, Arielle R. ;
Neumann, Craig S. ;
Cope, Lora M. ;
Kiehl, Kent A. .
JOURNAL OF ABNORMAL PSYCHOLOGY, 2016, 125 (06) :811-817
[5]   Where smart brains are different: A quantitative meta-analysis of functional and structural brain imaging studies on intelligence [J].
Basten, Ulrike ;
Hilger, Kirsten ;
Fiebach, Christian J. .
INTELLIGENCE, 2015, 51 :10-27
[6]   Patterns of cerebral and cerebellar white matter degeneration in ALS [J].
Bede, P. ;
Elamin, M. ;
Byrne, S. ;
McLaughlin, R. L. ;
Kenna, K. ;
Vajda, A. ;
Fagan, A. ;
Bradley, D. G. ;
Hardiman, O. .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2015, 86 (04) :468-+
[7]   Gradient projection algorithms and software for arbitrary rotation criteria in factor analysis [J].
Bernaards, CA ;
Jennrich, RI .
EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2005, 65 (05) :770-790
[8]   Cerebral Asymmetry and Language Development: Cause, Correlate, or Consequence? [J].
Bishop, Dorothy V. M. .
SCIENCE, 2013, 340 (6138)
[9]  
Brown T.A., 2015, Confirmatory Factor Analysis for Applied Research, V2nd, DOI DOI 10.19030/AJBE.V6I3.7818
[10]   CONVERGENT AND DISCRIMINANT VALIDATION BY THE MULTITRAIT-MULTIMETHOD MATRIX [J].
CAMPBELL, DT ;
FISKE, DW .
PSYCHOLOGICAL BULLETIN, 1959, 56 (02) :81-105