Quantification of a massive orbit of a generalized Poincare group

被引:12
作者
Cahen, B
机构
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1997年 / 325卷 / 07期
关键词
D O I
10.1016/S0764-4442(97)80063-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be the generalized Poincare group Rn+1 x SO0 (n, 1) and O be a coadjoint orbit of G with little group SO(n). We give a symplectomorphism from R-2n x O to O, where O' is a coadjoint orbit of SO(n). When O is entire and associated to a unitary irreducible representation (n) over bar of G, we construct a Weyl correspondence on O adapted to pi.
引用
收藏
页码:803 / 806
页数:4
相关论文
共 17 条
[1]   NILPOTENT FOURIER-TRANSFORM AND APPLICATIONS [J].
ARNAL, D ;
CORTET, JC .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 9 (01) :25-34
[2]  
ARNAL D, 1979, C JOURN REL ANG
[3]  
ARNAL D, 1988, STAR EXPONENTIAL HOL
[4]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[5]   GENERAL CONCEPT OF QUANTIZATION [J].
BEREZIN, FA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 40 (02) :153-174
[6]   Deformation program for principal series representations [J].
Cahen, B .
LETTERS IN MATHEMATICAL PHYSICS, 1996, 36 (01) :65-75
[7]  
CAHEN M, DEFORMATIONS QUANTIF
[8]   RELATIVISTIC QUANTUM KINEMATICS IN THE MOYAL REPRESENTATION [J].
CARINENA, JF ;
GRACIABONDIA, JM ;
VARILLY, JC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (06) :901-933
[9]  
COTTON P, 1996, CONTRACTION ADAPTED
[10]  
Folland B., 1989, HARMONIC ANAL PHASE