Two-dimensional imaging of III-V quantum dots confinement potential

被引:12
|
作者
Shusterman, S. [1 ]
Raizman, A. [1 ]
Sher, A. [1 ]
Schwarzman, A. [2 ]
Azriel, O. [2 ]
Boag, A. [2 ]
Rosenwaks, Y. [2 ]
Galindo, P. L. [3 ]
Paltiel, Y. [4 ,5 ]
机构
[1] Soreq NRC, Electroopt Div, IL-81800 Yavne, Israel
[2] Tel Aviv Univ, Fac Engn, Sch Elect Engn Phys Elect, IL-69978 Tel Aviv, Israel
[3] Univ Cadiz, CASEM, Dept Lenguajes & Sistemas Informat, Puerto Real 11510, Cadiz, Spain
[4] Hebrew Univ Jerusalem, Dept Appl Phys, IL-91904 Jerusalem, Israel
[5] Hebrew Univ Jerusalem, Ctr Nano Sci & Nanotechnol, IL-91904 Jerusalem, Israel
关键词
SELF-ORGANIZED GROWTH; GE;
D O I
10.1209/0295-5075/88/66003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Composition, doping, size, and strain distribution within quantum dots, and at the dots-substrate interfaces, determine the confinement potential of electrons and holes creating a complex band structure. We use ultra-high vacuum Kelvin probe force microscopy to obtain the two-dimensional confinement potential in and around InAs and InSb dots epitaxially grown on GaAs. It is found that the potential manifests rich features governed by the strain and composition variations in the vicinity of the individual quantum dots. The results can adjust or confirm theoretical predictions for many epitaxial dots systems. Copyright (C) EPLA, 2009
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Colloidal quantum dots of III-V semiconductors
    Nozik, AJ
    Micic, OI
    MRS BULLETIN, 1998, 23 (02) : 24 - 30
  • [2] Fabrication of III-V semiconductor quantum dots
    Akahane, Kouichi
    Yamamoto, Naokatsu
    PLASMONICS: NANOIMAGING, NANOFABRICATION, AND THEIR APPLICATIONS V, 2009, 7395
  • [3] Two-dimensional III-V nucleation on Si for nonlinear optics
    Lin, Angie C.
    Harris, James S.
    Fejer, M. M.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2011, 29 (03):
  • [4] Pushing the limit of lithography for patterning two-dimensional lattices in III-V semiconductor quantum wells
    Vergel, N. A. Franchina
    Post, C.
    Vaurette, F.
    Lambert, Y.
    Yarekha, D.
    Coinon, C.
    Fleury, G.
    Kulmala, T. S.
    Xu, T.
    Desplanque, L.
    Wallart, X.
    Vanmaekelbergh, D.
    Delerue, C.
    Grandidier, B.
    2021 5TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE (EDTM), 2021,
  • [5] Self-assembled III-V quantum dots: Potential for silicon optoelectronics
    Leon, R
    2001 TOPICAL MEETING ON SILICON MONOLITHIC INTEGRATED CIRCUITS IN RF SYSTEMS, DIGEST OF PAPERS, 2001, : 79 - 87
  • [6] III-V quantum dots for optoelectronic device applications
    Fu, L.
    Jolley, G.
    Mokkapati, S.
    Majid, A.
    Lu, H. F.
    Tan, H. H.
    Jagadish, C.
    2009 4TH INTERNATIONAL CONFERENCE ON COMPUTERS AND DEVICES FOR COMMUNICATION (CODEC 2009), 2009, : 468 - 468
  • [7] Colloidal III-V quantum dots: a synthetic perspective
    Gazis, Theodore A.
    Cartlidge, Ashleigh J.
    Matthews, Peter D.
    JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (12) : 3926 - 3935
  • [8] III-V semiconductor quantum dots with a magnetic impurity
    Chutia, Sucismita
    Bhattacharjee, A. K.
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 6, NO 10, 2009, 6 (10): : 2101 - 2106
  • [9] Different paths to tunability in III-V quantum dots
    Leon, R
    Lobo, C
    Clark, A
    Bozek, R
    Wysmolek, A
    Kurpiewski, A
    Kaminska, M
    JOURNAL OF APPLIED PHYSICS, 1998, 84 (01) : 248 - 254
  • [10] Transition from two-dimensional to three-dimensional quantum confinement in semiconductor quantum wires/quantum dots
    Zhu, Q.
    Karlsson, K. F.
    Pelucchi, E.
    Kapon, E.
    NANO LETTERS, 2007, 7 (08) : 2227 - 2233