The PSI-K subunit of photosystem I is involved in the interaction between light-harvesting complex I and the photosystem I reaction center core

被引:131
作者
Jensen, PE [1 ]
Gilpin, M [1 ]
Knoetzel, J [1 ]
Scheller, HV [1 ]
机构
[1] Royal Vet & Agr Univ, Dept Plant Biol, Plant Biochem Lab, DK-1871 Copenhagen, Denmark
关键词
D O I
10.1074/jbc.M000550200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
PSI-K is a subunit of photosystem I. The function of PSI-K was characterized in Arabidopsis plants transformed with a psaK cDNA in antisense orientation, and several lines without detectable PSI-K protein were identified. Plants without PSI-K have a 19% higher chlorophyll alb ratio and 19% more P700 than wild-type plants. Thus, plants without PSI-R compensate by making more photosystem I. The photosystem I electron transport in vitro is unaffected in the absence of PSI-K. Light response curves for oxygen evolution indicated that the photosynthetic machinery of PSI-K-deficient plants have less capacity to utilize light energy. Plants without PSI-K have less state 1-state 2 transition. Thus, the redistribution of absorbed excitation energy between the two photosystems is reduced. Low temperature fluorescence emission spectra revealed a 2-nm blue shift in the long wavelength emission in plants lacking PSI-K. Furthermore, thylakoids and isolated PSI without PSI-K had 20-30% less Lhca2 and 30-40% less Lhca3, whereas Lhca1 and Lhca4 were unaffected. During electrophoresis under mildly denaturing conditions, all four Lhca subunits were partially dissociated from photosystem I lacking PSI-K, The observed effects demonstrate that PSI-K has a role in organizing the peripheral light-harvesting complexes on the core antenna of photosystem I.
引用
收藏
页码:24701 / 24708
页数:8
相关论文
共 42 条
[1]   PROTEIN-PHOSPHORYLATION IN REGULATION OF PHOTOSYNTHESIS [J].
ALLEN, JF .
BIOCHIMICA ET BIOPHYSICA ACTA, 1992, 1098 (03) :275-335
[2]  
ANDERSEN B, 1992, PHYSIOL PLANTARUM, V84, P154, DOI 10.1111/j.1399-3054.1992.tb08778.x
[3]   CHLOROPHYLL-PROTEIN COMPLEXES OF BARLEY PHOTOSYSTEM-I [J].
BASSI, R ;
SIMPSON, D .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1987, 163 (02) :221-230
[4]   PROTEIN-PHOSPHORYLATION IN GREEN PLANT CHLOROPLASTS [J].
BENNETT, J .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1991, 42 :281-311
[5]   THE STRUCTURE OF SPINACH PHOTOSYSTEM-I STUDIED BY ELECTRON-MICROSCOPY [J].
BOEKEMA, EJ ;
WYNN, RM ;
MALKIN, R .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1017 (01) :49-56
[6]   Screening of chlorina mutants of barley (Hordeum vulgare L.) with antibodies against light-harvesting proteins of PS I and PS II: Absence of specific antenna proteins [J].
Bossmann, B ;
Knoetzel, J ;
Jansson, S .
PHOTOSYNTHESIS RESEARCH, 1997, 52 (02) :127-136
[7]  
CHITNIS VP, 1993, J BIOL CHEM, V268, P11678
[8]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[9]  
GOLBECK JH, 1992, ANNU REV PLANT PHYS, V43, P293, DOI 10.1146/annurev.pp.43.060192.001453
[10]  
Golbeck JH., 1994, The molecular biology of cyanobacteria, P319