An In Silico Method for Predicting Drug Synergy Based on Multitask Learning

被引:8
作者
Chen, Xin [1 ]
Luo, Lingyun [1 ,2 ]
Shen, Cong [3 ]
Ding, Pingjian [1 ,2 ]
Luo, Jiawei [3 ]
机构
[1] Univ South China, Sch Comp Sci, Hengyang 421001, Hunan, Peoples R China
[2] Hunan Med Big Data Int Sci & Tech Innovat Coopera, Hengyang 421000, Hunan, Peoples R China
[3] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Drug synergy; Multitask learning; Drug-target interaction; In silico technology; COMBINATIONS; TARGET; IDENTIFICATION; NETWORKS;
D O I
10.1007/s12539-021-00422-x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
To make better use of all kinds of knowledge to predict drug synergy, it is crucial to successfully establish a drug synergy prediction model and leverage the reconstruction of sparse known drug targets. Therefore, we present an in silico method that predicts the synergy scores of drug pairs based on multitask learning (DSML) that could fuse drug targets, protein-protein interactions, anatomical therapeutic chemical codes, a priori knowledge of drug combinations. To simultaneously reconstruct drug-target protein interactions and synergistic drug combinations, DSML benefits indirectly from the associations with relation through proteins. In cross-validation experiments, DSML improved the ability to predict drug synergy. Moreover, the reconstruction of drug-target interactions and the incorporation of multisource knowledge significantly improved drug combination predictions by a large margin. The potential drug combinations predicted by DSML demonstrate its ability to predict drug synergy.
引用
收藏
页码:299 / 311
页数:13
相关论文
共 63 条
[1]   An ensemble framework for clustering protein-protein interaction networks [J].
Asur, Sitaram ;
Ucar, Duygu ;
Parthasarathy, Srinivasan .
BIOINFORMATICS, 2007, 23 (13) :I29-I40
[2]   A community computational challenge to predict the activity of pairs of compounds [J].
Bansal, Mukesh ;
Yang, Jichen ;
Karan, Charles ;
Menden, Michael P. ;
Costello, James C. ;
Tang, Hao ;
Xiao, Guanghua ;
Li, Yajuan ;
Allen, Jeffrey ;
Zhong, Rui ;
Chen, Beibei ;
Kim, Minsoo ;
Wang, Tao ;
Heiser, Laura M. ;
Realubit, Ronald ;
Mattioli, Michela ;
Alvarez, Mariano J. ;
Shen, Yao ;
Gallahan, Daniel ;
Singer, Dinah ;
Saez-Rodriguez, Julio ;
Xie, Yang ;
Stolovitzky, Gustavo ;
Califano, Andrea ;
Abbuehl, Jean-Paul ;
Altman, Russ B. ;
Balcome, Shawn ;
Bell, Ana ;
Bender, Andreas ;
Berger, Bonnie ;
Bernard, Jonathan ;
Bieberich, Andrew A. ;
Borboudakis, Giorgos ;
Chan, Christina ;
Chen, Ting-Huei ;
Choi, Jaejoon ;
Coelho, Luis Pedro ;
Creighton, Chad J. ;
Dampier, Will ;
Davisson, V. Jo ;
Deshpande, Raamesh ;
Diao, Lixia ;
Di Camillo, Barbara ;
Dundar, Murat ;
Ertel, Adam ;
Goswami, Chirayu P. ;
Gottlieb, Assaf ;
Gould, Michael N. ;
Goya, Jonathan ;
Grau, Michael .
NATURE BIOTECHNOLOGY, 2014, 32 (12) :1213-+
[3]   Large-Scale Machine Learning with Stochastic Gradient Descent [J].
Bottou, Leon .
COMPSTAT'2010: 19TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STATISTICS, 2010, :177-186
[4]   Feature selection in machine learning: A new perspective [J].
Cai, Jie ;
Luo, Jiawei ;
Wang, Shulin ;
Yang, Sheng .
NEUROCOMPUTING, 2018, 300 :70-79
[5]   PCE-FR: A Novel Method for Identifying Overlapping Protein Complexes in Weighted Protein-Protein Interaction Networks Using Pseudo-Clique Extension Based on Fuzzy Relation [J].
Cao, Buwen ;
Luo, Jiawei ;
Liang, Cheng ;
Wang, Shulin ;
Ding, Pingjian .
IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2016, 15 (07) :728-738
[6]   iDrug: Integration of drug repositioning and drug-target prediction via cross-network embedding [J].
Chen, Huiyuan ;
Cheng, Feixiong ;
Li, Jing .
PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (07)
[7]   Modeling Relational Drug-Target-Disease Interactions via Tensor Factorization with Multiple Web Sources [J].
Chen, Huiyuan ;
Li, Jing .
WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, :218-227
[8]   mTD: A database of microRNAs affecting therapeutic effects of drugs [J].
Chen, Xiao ;
Xie, Wen-Bin ;
Xiao, Pei-Pei ;
Zhao, Xing-Ming ;
Yan, Hong .
JOURNAL OF GENETICS AND GENOMICS, 2017, 44 (05) :269-271
[9]   NLLSS: Predicting Synergistic Drug Combinations Based on Semi-supervised Learning [J].
Chen, Xing ;
Ren, Biao ;
Chen, Ming ;
Wang, Quanxin ;
Zhang, Lixin ;
Yan, Guiying .
PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (07)
[10]   Prediction of Polypharmacological Profiles of Drugs by the Integration of Chemical, Side Effect, and Therapeutic Space [J].
Cheng, Feixiong ;
Li, Weihua ;
Wu, Zengrui ;
Wang, Xichuan ;
Zhang, Chen ;
Li, Jie ;
Liu, Guixia ;
Tang, Yun .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2013, 53 (04) :753-762