Back stable Schubert calculus

被引:39
作者
Lam, Thomas [1 ]
Lee, Seung Jin [2 ]
Shimozono, Mark [3 ]
机构
[1] Univ Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA
[2] Seoul Natl Univ, Res Inst Math, Dept Math Sci, Gwanak Ro 1, Seoul 151747, South Korea
[3] Virginia Tech, Dept Math, MC 0123,460 McBryde Hall,255 Stanger St, Blacksburg, VA 24061 USA
基金
新加坡国家研究基金会;
关键词
K-THEORY; POLYNOMIALS; COHOMOLOGY; HOMOLOGY; RING; G/P;
D O I
10.1112/S0010437X21007028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the back stable Schubert calculus of the infinite flag variety. Our main results are: - a formula for back stable (double) Schubert classes expressing them in terms of a symmetric function part and a finite part; - a novel definition of double and triple Stanley symmetric functions; - a proof of the positivity of double Edelman-Greene coefficients generalizing the results of Edelman-Greene and Lascoux-Schutzenberger; - the definition of a new class of bumpless pipedreams, giving new formulae for double Schubert polynomials, back stable double Schubert polynomials, and a new form of the Edelman-Greene insertion algorithm; - the construction of the Peterson subalgebra of the infinite nilHecke algebra, extending work of Peterson in the affine case; - equivariant Pieri rules for the homology of the infinite Grassmannian; - homology divided difference operators that create the equivariant homology Schubert classes of the infinite Grassmannian.
引用
收藏
页码:883 / 962
页数:80
相关论文
共 51 条
[31]   K-theory Schubert calculus of the affine Grassmannian [J].
Lam, Thomas ;
Schilling, Anne ;
Shimozono, Mark .
COMPOSITIO MATHEMATICA, 2010, 146 (04) :811-852
[32]   Quantum cohomology of G/P and homology of affine Grassmannian [J].
Lam, Thomas ;
Shimozono, Mark .
ACTA MATHEMATICA, 2010, 204 (01) :49-90
[33]   SCHUBERT POLYNOMIALS AND THE LITTLEWOOD-RICHARDSON RULE [J].
LASCOUX, A ;
SCHUTZENBERGER, MP .
LETTERS IN MATHEMATICAL PHYSICS, 1985, 10 (2-3) :111-124
[34]  
LASCOUX A, 1982, CR ACAD SCI I-MATH, V294, P447
[35]  
LASCOUX A, 1982, CR ACAD SCI I-MATH, V295, P393
[36]  
Lascoux Alain, 2002, PREPRINT
[37]   COMBINATORIAL DESCRIPTION OF THE COHOMOLOGY OF THE AFFINE FLAG VARIETY [J].
Lee, Seung Jin .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (06) :4029-4057
[38]   A canonical expansion of the product of two Stanley symmetric functions [J].
Li, Nan .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2014, 39 (04) :833-851
[39]  
Macdonald G., 1991, London Math. Soc. Lecture Notes, V166, P73
[40]  
Mihalcea LC, 2006, AM J MATH, V128, P787