Back stable Schubert calculus

被引:40
作者
Lam, Thomas [1 ]
Lee, Seung Jin [2 ]
Shimozono, Mark [3 ]
机构
[1] Univ Michigan, Dept Math, 530 Church St, Ann Arbor, MI 48109 USA
[2] Seoul Natl Univ, Res Inst Math, Dept Math Sci, Gwanak Ro 1, Seoul 151747, South Korea
[3] Virginia Tech, Dept Math, MC 0123,460 McBryde Hall,255 Stanger St, Blacksburg, VA 24061 USA
基金
新加坡国家研究基金会;
关键词
K-THEORY; POLYNOMIALS; COHOMOLOGY; HOMOLOGY; RING; G/P;
D O I
10.1112/S0010437X21007028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the back stable Schubert calculus of the infinite flag variety. Our main results are: - a formula for back stable (double) Schubert classes expressing them in terms of a symmetric function part and a finite part; - a novel definition of double and triple Stanley symmetric functions; - a proof of the positivity of double Edelman-Greene coefficients generalizing the results of Edelman-Greene and Lascoux-Schutzenberger; - the definition of a new class of bumpless pipedreams, giving new formulae for double Schubert polynomials, back stable double Schubert polynomials, and a new form of the Edelman-Greene insertion algorithm; - the construction of the Peterson subalgebra of the infinite nilHecke algebra, extending work of Peterson in the affine case; - equivariant Pieri rules for the homology of the infinite Grassmannian; - homology divided difference operators that create the equivariant homology Schubert classes of the infinite Grassmannian.
引用
收藏
页码:883 / 962
页数:80
相关论文
共 51 条
[1]  
Andersen H.H., 1994, Asterisque, V220
[2]  
Bergeron Nantel, 1993, Experimental Mathematics, V2, P257
[3]  
Bernstein I. N., 1973, Uspehi Mat. Nauk, V28, P3
[4]   Equivariant homology and K-theory of affine Grassmannians and Toda lattices [J].
Bezrukavnikov, R ;
Finkelberg, M ;
Mirkovic, I .
COMPOSITIO MATHEMATICA, 2005, 141 (03) :746-768
[5]   SCHUBERT POLYNOMIALS FOR THE CLASSICAL-GROUPS [J].
BILLEY, S ;
HAIMAN, M .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 8 (02) :443-482
[6]   SOME COMBINATORIAL PROPERTIES OF SCHUBERT POLYNOMIALS [J].
BILLEY, SC ;
JOCKUSCH, W ;
STANLEY, RP .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1993, 2 (04) :345-374
[7]   Kostant polynomials and the cohomology ring for G/B [J].
Billey, SC .
DUKE MATHEMATICAL JOURNAL, 1999, 96 (01) :205-224
[9]   TOPOLOGICAL SCHUR LEMMA AND RELATED RESULTS [J].
CHANG, T ;
SKJELBRE.T .
ANNALS OF MATHEMATICS, 1974, 100 (02) :307-321
[10]  
Demazure Michel, 1974, ANN SCI ECOLE NORM S, V7, P53