Optical Solitons With M-Truncated and Beta Derivatives in Nonlinear Optics

被引:45
作者
Yusuf, Abdullahi [1 ,2 ]
Inc, Mustafa [1 ]
Baleanu, Dumitru [3 ,4 ]
机构
[1] Firat Univ, Sci Fac, Dept Math, Elazig, Turkey
[2] Fed Univ Dutse, Sci Fac, Dept Math, Jigawa, Nigeria
[3] Cankaya Univ, Dept Math, Ankara, Turkey
[4] Inst Space Sci, Bucharest, Romania
关键词
complex Ginzburg-Landau equation; generalized tanh method; generalized Bernoulli sub-ODE method; beta derivative; optical solitons; PARTIAL-DIFFERENTIAL-EQUATIONS; 1ST INTEGRAL METHOD; SCHRODINGER-EQUATION; WAVE SOLUTIONS; POWER-LAW; ORDER; MODEL; DARK;
D O I
10.3389/fphy.2019.00126
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper studies optical solitons with M-truncated and beta derivatives (BD) for the Complex Ginzburg-Landau equation (CGLE) with Kerr Law nonlinearity. Two well-known integration schemes which are generalized tanh method (GTM) and generalized Bernoulli sub-ODE method (GBM) are utilized to extract such optical soliton solutions. For the successful existence of the solutions, the constraints conditions have been presented. The discussion for the physical features of the obtained solutions is reported.
引用
收藏
页数:8
相关论文
共 55 条
  • [51] Optical solitons in monomode fibers with higher order nonlinear Schrodinger equation
    Tariq, Kalim U.
    Younis, Muhammad
    Rizvi, S. T. R.
    [J]. OPTIK, 2018, 154 : 360 - 371
  • [52] On the generalized tanh method for the (2+1)-dimensional breaking soliton equation
    Tian, B
    Gao, YT
    [J]. MODERN PHYSICS LETTERS A, 1995, 10 (38) : 2937 - 2941
  • [53] Exact optical solitons in (n+1)-dimensions under anti-cubic law of nonlinearity
    Younas, Bushra
    Younis, Muhammad
    Ahmed, Muhammad Ozair
    Rizvi, Syed Tahir Raza
    [J]. OPTIK, 2018, 156 : 479 - 486
  • [54] Optical Solitons Possessing Beta Derivative of the Chen-Lee-Liu Equation in Optical Fibers
    Yusuf, Abdullahi
    Inc, Mustafa
    Aliyu, Aliyu Isa
    Baleanu, Dumitru
    [J]. FRONTIERS IN PHYSICS, 2019, 7 (MAR):
  • [55] Optical solitons with Biswas-Milovic equation by extended trial equation method
    Zhou, Qin
    Ekici, M.
    Sonmezoglu, A.
    Mirzazadeh, M.
    Eslami, M.
    [J]. NONLINEAR DYNAMICS, 2016, 84 (04) : 1883 - 1900