A Comparison of the Efficiency of Parameter Estimation Methods in the Context of Streamflow Forecasting

被引:0
作者
Parviz, L. [1 ]
Kholghi, M. [1 ]
Hoorfar, A. [1 ]
机构
[1] Univ Tehran, Coll Soil & Water Engn, Dept Irrigat & Reclamat Engn, Karaj, Iran
来源
JOURNAL OF AGRICULTURAL SCIENCE AND TECHNOLOGY | 2010年 / 12卷 / 01期
关键词
ARIMA model; Conditional likelihood; Forecasting; Genetic algorithm; Parameter estimation; MAXIMUM-LIKELIHOOD; TIME-SERIES; ARIMA MODELS; ALGORITHM; DOMAIN;
D O I
暂无
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
The forecasting of hydrological variables, such as streamflow, plays an important role in water resource planning and management. Recently, the development of stochastic models is regarded as a major step for this purpose. Streamflow forecasting using the ARIMA model can be conducted when unknown parameters are estimated correctly because parameter estimation is one of the crucial steps in modeling process. The main objective of this research is to explore the performance of parameter estimation methods in the ARIMA model. In this study, four parameter estimation methods have been used: (i) autocorrelation function based on model parameters; (ii) conditional likelihood; (iii) unconditional likelihood; and (iv) genetic algorithm. Streamflow data of Ouromieh River basin situated in Northwest Iran has been selected as a case study for this research. The results of these four parameter estimation methods have been compared using RMSE, RME, SE, MAE and minimizing the sum squares of error. This research indicates that the genetic algorithm and unconditional likelihood methods are, respectively, more appropriate in comparison with other methods but, due to the complexity of the model, genetic algorithm has high convergence to a global optimum.
引用
收藏
页码:47 / 60
页数:14
相关论文
共 50 条
[11]   Improving Streamflow Forecasting Efficiency Using Signal Decomposition Approaches [J].
Vishwakarma, Dinesh Kumar ;
Heddam, Salim ;
Gaur, Arpit ;
Tiwari, Ravindra Kumar ;
Kisi, Ozgur ;
Malik, Anurag ;
Bishnoi, Chetak ;
Alataway, Abed ;
Dewidar, Ahmed Z. ;
Mattar, Mohamed A. .
WATER RESOURCES MANAGEMENT, 2025,
[12]   Comparison of Deep Learning Techniques for River Streamflow Forecasting [J].
Le, Xuan-Hien ;
Nguyen, Duc-Hai ;
Jung, Sungho ;
Yeon, Minho ;
Lee, Giha .
IEEE ACCESS, 2021, 9 :71805-71820
[13]   Comparison of automated parameter estimation methods for neuronal signaling networks [J].
Pettinen, A ;
Yli-Harja, O ;
Linne, ML .
NEUROCOMPUTING, 2006, 69 (10-12) :1371-1374
[14]   COMPARISON OF ROBUST MOMENT METHODS FOR PARAMETER ESTIMATION IN AUTOREGRESSIVE PROCESS [J].
Flimmel, Samuel ;
Fojtik, Jan ;
Mala, Ivana ;
Prochazka, Jiri .
21ST AMSE: APPLICATIONS OF MATHEMATICS AND STATISTICS IN ECONOMICS, 2018, :85-95
[15]   Generalized weighted exponential mean combining forecasting model and its methods of parameter estimation [J].
Wan, YC ;
Lin, B ;
He, BJ .
PROCEEDINGS OF 2002 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING, VOLS I AND II, 2002, :519-523
[16]   Empirical comparison of several methods for parameter estimation of a shifted lognormal distribution [J].
Muñoz D.F. ;
Ruiz C. ;
Guzman S. .
Informacion Tecnologica, 2016, 27 (03) :131-140
[17]   EXPERIMENTAL COMPARISON OF PARAMETER-ESTIMATION METHODS IN ADAPTIVE ROBOT CONTROL [J].
BERGHUIS, H ;
ROEBBERS, H ;
NIJMEIJER, H .
AUTOMATICA, 1995, 31 (09) :1275-1285
[18]   Using a Bayesian approach to parameter estimation; comparison of the GLUE and MCMC methods [J].
Makowski, D ;
Wallach, D ;
Tremblay, M .
AGRONOMIE, 2002, 22 (02) :191-203
[19]   Data Assimilation Methods for Neuronal State and Parameter Estimation [J].
Moye, Matthew J. ;
Diekman, Casey O. .
JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2018, 8
[20]   A comparison of the parameter estimation methods for bimodal mixture Weibull distribution with complete data [J].
Karakoca, Aydin ;
Erisoglu, Ulku ;
Erisoglu, Murat .
JOURNAL OF APPLIED STATISTICS, 2015, 42 (07) :1472-1489